Abstract

Dynamic models of the cable-driven continuum robots are commonly employed for those robots that are actuated by the cables’ forces. In this paper, a dynamic model is proposed for the cable-driven continuum robots actuated by position and/or force actuated cables, which is appropriate for any desired number of actuation cables and their routing. The robot is supposed to have an extensible backbone with the capability of bending and torsion in three-dimensional spaces. The proposed dynamic model is developed based on the Euler–Lagrange formulation of equations of motion taking into account all the effective forces including gravity force, cable actuation forces, external forces, and cable-disk friction forces. Furthermore, an iterative numerical solution method is presented for the dynamic model which requires much less memory and computational effort in comparison with the closed-form methods. The static model of the robots is also developed based on the dynamic model and the results obtained from the simulations and experiments are used for the validation of the static and dynamic models. The final results indicate the accuracy of the proposed models for estimating the kinematics, statics, and dynamics of the cable-driven continuum robots.

References

1.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
. 10.1109/TRO.2015.2489500
2.
Rucker
,
D. C.
, and
Webster
,
R. J.
, III
,
2011
, “
Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading
,”
IEEE Trans. Rob.
,
27
(
6
), pp.
1033
1044
. 10.1109/TRO.2011.2160469
3.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2013
, “
Continuum Robot Dynamics Utilizing the Principle of Virtual Power
,”
IEEE Trans. Rob.
,
30
(
1
), pp.
275
287
. 10.1109/TRO.2013.2281564
4.
Mahl
,
T.
,
Hildebrandt
,
A.
, and
Sawodny
,
O.
,
2014
, “
A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
935
949
. 10.1109/TRO.2014.2314777
5.
Qi
,
F.
,
Ju
,
F.
,
Bai
,
D.
,
Wang
,
Y.
, and
Chen
,
B.
,
2018
, “
Motion Modelling and Error Compensation of a Cable-Driven Continuum Robot for Applications to Minimally Invasive Surgery
,”
Int. J. Medical Robotics Computer Assisted Surgery
,
14
(
6
), p.
e1932
. 10.1002/rcs.1932
6.
Wang
,
H.
,
Wang
,
C.
,
Chen
,
W.
,
Liang
,
X.
, and
Liu
,
Y.
,
2016
, “
Three-Dimensional Dynamics for Cable-Driven Soft Manipulator
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
18
28
. 10.1109/TMECH.2016.2606547
7.
Gong
,
Z.
,
Cheng
,
J.
,
Chen
,
X.
,
Sun
,
W.
,
Fang
,
X.
,
Hu
,
K.
,
Xie
,
Z.
,
Wang
,
T.
, and
Wen
,
L.
,
2018
, “
A Bio-Inspired Soft Robotic Arm: Kinematic Modeling and Hydrodynamic Experiments
,”
J. Bionic Eng.
,
15
(
2
), pp.
204
219
. 10.1007/s42235-018-0016-x
8.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2014
, “
Mechanics Modeling of Multisegment Rod-Driven Continuum Robots
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041006
. 10.1115/1.4027235
9.
Webster
,
R. J.
, III
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
. 10.1177/0278364910368147
10.
Webster
,
R. J.
, III
,
2007
, “
Design and Mechanics of Continuum Robots for Surgery
,”
Ph.D. dissertation
,
Johns Hopkins University
,
Baltimore, MD
.
11.
Webster
,
R. J.
, III
,
Romano
,
J. M.
, and
Cowan
,
N. J.
,
2008
, “
Mechanics of Precurved-Tube Continuum Robots
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
67
78
. 10.1109/TRO.2008.2006868
12.
Chirikjian
,
G. S.
,
1994
, “
Hyper-Redundant Manipulator Dynamics: A Continuum Approximation
,”
Adv. Rob.
,
9
(
3
), pp.
217
243
. 10.1163/156855395X00175
13.
Lang
,
H.
,
Linn
,
J.
, and
Arnold
,
M.
,
2011
, “
Multi-body Dynamics Simulation of Geometrically Exact Cosserat Rods
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
285
312
. 10.1007/s11044-010-9223-x
14.
Spillmann
,
J.
, and
Teschner
,
M.
,
2007
, “
CORDE: Cosserat Rod Elements for the Dynamic Simulation of One-Dimensional Elastic Objects
,”
Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
,
San Diego, CA
,
Aug. 2007
, pp.
63
72
.
15.
Rucker
,
D. C.
,
Jones
,
B. A.
, and
Webster
R. J.
, III
,
2010
, “
A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
769
780
. 10.1109/TRO.2010.2062570
16.
Renda
,
F.
,
Giorelli
,
M.
,
Calisti
,
M.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2014
, “
Dynamic Model of a Multibending Soft Robot arm Driven by Cables
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1109
1122
. 10.1109/TRO.2014.2325992
17.
Renda
,
F.
,
Boyer
,
F.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2018
, “
Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics
,”
IEEE Trans. Rob.
,
34
(
6
), pp.
1518
1533
. 10.1109/TRO.2018.2868815
18.
Amouri
,
A.
,
Zaatri
,
A.
, and
Mahfoudi
,
C.
,
2018
, “
Dynamic Modeling of a Class of Continuum Manipulators in Fixed Orientation
,”
J. Intelligent Rob. Syst.
,
91
(
3–4
), pp.
413
424
. 10.1007/s10846-017-0734-z
19.
Gravagne
,
I. A.
,
Rahn
,
C. D.
, and
Walker
,
I. D.
,
2003
, “
Large Deflection Dynamics and Control for Planar Continuum Robots
,”
IEEE/ASME Trans. Mechatron.
,
8
(
2
), pp.
299
307
. 10.1109/TMECH.2003.812829
20.
Godage
,
I. S.
,
Medrano-Cerda
,
G. A.
,
Branson
,
D. T.
,
Guglielmino
,
E.
, and
Caldwell
,
D. G.
,
2016
, “
Dynamics for Variable Length Multisection Continuum Arms
,”
Int. J. Rob. Res.
,
35
(
6
), pp.
695
722
. 10.1177/0278364915596450
21.
He
,
B.
,
Wang
,
Z.
,
Li
,
Q.
,
Xie
,
H.
, and
Shen
,
R.
,
2013
, “
An Analytic Method for the Kinematics and Dynamics of a Multiple-Backbone Continuum Robot
,”
Int. J. Adv. Rob. Syst.
,
10
(
1
), p.
84
. 10.5772/54051
22.
Falkenhahn
,
V.
,
Mahl
,
T.
,
Hildebrandt
,
A.
,
Neumann
,
R.
, and
Sawodny
,
O.
,
2014
, “
Dynamic Modeling of Constant Curvature Continuum Robots Using the Euler-Lagrange Formalism
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
2428
2433
.
23.
Falkenhahn
,
V.
,
Mahl
,
T.
,
Hildebrandt
,
A.
,
Neumann
,
R.
, and
Sawodny
,
O.
,
2015
, “
Dynamic Modeling of Bellows-Actuated Continuum Robots Using the Euler–Lagrange Formalism
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1483
1496
. 10.1109/TRO.2015.2496826
24.
Tatlicioglu
,
E.
,
Walker
,
I. D.
, and
Dawson
,
D. M.
,
2007
, “
Dynamic Modelling for Planar Extensible Continuum Robot Manipulators
,”
Proceedings of 2007 IEEE International Conference on Robotics and Automation
,
Roma, Italy
,
Apr. 10–14
, pp.
1357
1362
.
25.
Godage
,
I. S.
,
Branson
,
D. T.
,
Guglielmino
,
E.
,
Medrano-Cerda
,
G. A.
, and
Caldwell
,
D. G.
,
2011
, “
Dynamics for Biomimetic Continuum Arms: A Modal Approach
,”
2011 IEEE International Conference on Robotics and Biomimetics
,
Phuket, Thailand
,
Dec. 7–11
, pp.
104
109
.
26.
Hollerbach
,
J. M.
,
1980
, “
A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity
,”
IEEE Trans. Syst., Man, Cybernetics
,
10
(
11
), pp.
730
736
. 10.1109/TSMC.1980.4308393
27.
Balafoutis
,
C. A.
,
1994
, “
A Survey of Efficient Computational Methods for Manipulator Inverse Dynamics
,”
J. Intelligent Rob. Syst.
,
9
(
1–2
), pp.
45
71
. 10.1007/BF01258313
28.
Gallot
,
G.
,
Ibrahim
,
O.
, and
Khalil
,
W.
,
2007
, “
Dynamic Modeling and Simulation of a 3-D Hybrid Structure Eel-Like Robot
,”
Proceedings 2007 IEEE International Conference on Robotics and Automation
,
Roma, Italy
,
Apr. 10–14
, pp.
1486
1491
.
29.
Xu
,
K.
, and
Simaan
,
N.
,
2010
, “
Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots via Elliptic Integrals
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011006
. 10.1115/1.4000519
30.
Jones
,
B. A.
,
Gray
,
R. L.
, and
Turlapati
,
K.
,
2009
, “
Three Dimensional Statics for Continuum Robotics
,”
Intelligent Robots and Systems, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
, pp.
2659
2664
.
31.
Renda
,
F.
,
Cianchetti
,
M.
,
Giorelli
,
M.
,
Arienti
,
A.
, and
Laschi
,
C.
,
2012
, “
A 3D Steady-State Model of a Tendon-Driven Continuum Soft Manipulator Inspired by the Octopus Arm
,”
Bioinspiration Biomimetics
,
7
(
2
), p.
025006
. 10.1088/1748-3182/7/2/025006
32.
Dalvand
,
M. M.
,
Nahavandi
,
S.
, and
Howe
,
R. D.
,
2018
, “
An Analytical Loading Model for n-Tendon Continuum Robots
,”
IEEE Trans. Rob.
,
34
(
5
), pp.
1215
1225
. 10.1109/TRO.2018.2838548
33.
Huang
,
S.
,
Meng
,
D.
,
She
,
Y.
,
Wang
,
X.
,
Liang
,
B.
, and
Yuan
,
B.
,
2018
, “
Statics of Continuum Space Manipulators with Nonconstant Curvature via Pseudorigid-Body 3R Model
,”
IEEE Access
,
6
, pp.
70854
70865
. 10.1109/ACCESS.2018.2881261
34.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Pearson/Prentice Hall
,
Upper Saddle River, NJ
.
35.
Ehsaniseresht
,
A.
, and
Moghaddam
,
M. M.
,
2015
, “
A new Ground Contact Model for the Simulation of Bipeds’ Walking, Running and Jumping
,”
2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM)
,
Tehran, Iran
,
Oct. 7–9
, pp.
535
538
.
36.
MATLAB version 2017a
,
2017
,
Computer Software, The MathWorks Inc.
,
Natick, MA
.
You do not currently have access to this content.