Abstract

In this paper, we present a novel compliant robotic gripper with three variable stiffness fingers. While the shape morphing of the fingers is cable-driven, the stiffness variation is enabled by layer jamming. The inherent flexibility makes compliant gripper suitable for tasks such as grasping soft and irregular objects. However, their relatively low load capacity due to intrinsic compliance limits their applications. Variable stiffness robotic grippers have the potential to address this challenge as their stiffness can be tuned on demand of tasks. In our design, the compliant backbone of finger is made of 3D-printed PLA materials sandwiched between thin film materials. The workflow of the robotic gripper follows two basic steps. First, the compliant skeleton is driven by a servo motor via a tension cable and bend to a desired shape. Second, upon application of a negative pressure, the finger is stiffened up because friction between contact surfaces of layers that prevents their relative movement increases. As a result, their load capacity will be increased proportionally. Tests for stiffness of individual finger and load capacity of the robotic gripper are conducted to validate capability of the design. The results showed a 180-fold increase in stiffness of individual finger and a 30-fold increase in gripper’s load capacity.

References

1.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
. 10.1038/nature14543
2.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
. 10.1080/11762320802557865
3.
Brown
,
E.
,
Rodenberg
,
N.
,
Amend
,
J.
,
Mozeika
,
A.
,
Steltz
,
E.
,
Zakin
,
M. R.
,
Lipson
,
H.
, and
Jaeger
,
H. M.
,
2010
, “
Universal Robotic Gripper Based on the Jamming of Granular Material
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
44
), pp.
18809
18814
. 10.1073/pnas.1003250107
4.
Wood
,
R.
, and
Walsh
,
C.
,
2013
, “
Smaller, Softer, Safer, Smarter Robots
,”
Sci. Transl. Med.
,
5
(
210
), p.
210ed19
. 10.1126/scitranslmed.3006949
5.
Manti
,
M.
,
Cacucciolo
,
V.
, and
Cianchetti
,
M.
,
2016
, “
Stiffening in Soft Robotics: A Review of the State of the Art
,”
IEEE Rob. Autom. Mag.
,
23
(
3
), pp.
93
106
. 10.1109/MRA.2016.2582718
6.
She
,
Y.
,
Su
,
H.-J.
,
Lai
,
C.
, and
Meng
,
D.
,
2016
, “
Design and Prototype of a Tunable Stiffness Arm for Safe Human-Robot Interaction
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, American Society of Mechanical Engineers, p. V05BT07A063.
7.
Schubert
,
B. E.
, and
Floreano
,
D.
,
2013
, “
Variable Stiffness Material Based on Rigid Low-Melting-Point-Alloy Microstructures Embedded in Soft Poly(Dimethylsiloxane) (PDMS)
,”
RSC Adv.
,
3
(
46
), pp.
24671
24679
. 10.1039/c3ra44412k
8.
Deng
,
H.-x.
,
Gong
,
X.-l.
, and
Wang
,
L.-h.
,
2006
, “
Development of An Adaptive Tuned Vibration Absorber With Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
15
(
5
), pp.
N111
N116
. 10.1088/0964-1726/15/5/N02
9.
Hauser
,
S.
,
Robertson
,
M.
,
Ijspeert
,
A.
, and
Paik
,
J.
,
2017
, “
JammJoint: A Variable Stiffness Device Based on Granular Jamming for Wearable Joint Support
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
849
855
. 10.1109/LRA.2017.2655109
10.
Cheng
,
N. G.
,
Lobovsky
,
M. B.
,
Keating
,
S. J.
,
Setapen
,
A. M.
,
Gero
,
K. I.
,
Hosoi
,
A. E.
, and
Iagnemma
,
K. D.
,
2012
, “
Design and Analysis of a Robust, Low-Cost, Highly Articulated Manipulator Enabled by Jamming of Granular Media
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
4328
4333
.
11.
Al Abeach
,
L.
,
Nefti-Meziani
,
S.
,
Theodoridis
,
T.
, and
Davis
,
S.
,
2018
, “
A Variable Stiffness Soft Gripper Using Granular Jamming and Biologically Inspired Pneumatic Muscles
,”
J. Bionic Eng.
,
15
(
2
), pp.
236
246
. 10.1007/s42235-018-0018-8
12.
Amend
,
J.
,
Cheng
,
N.
,
Fakhouri
,
S.
, and
Culley
,
B.
,
2016
, “
Soft Robotics Commercialization: Jamming Grippers From Research to Product
,”
Soft Rob.
,
3
(
4
), pp.
213
222
. 10.1089/soro.2016.0021
13.
Li
,
Y.
,
Chen
,
Y.
,
Yang
,
Y.
, and
Wei
,
Y.
,
2017
, “
Passive Particle Jamming and its Stiffening of Soft Robotic Grippers
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
446
455
. 10.1109/TRO.2016.2636899
14.
Narang
,
Y. S.
,
Vlassak
,
J. J.
, and
Howe
,
R. D.
,
2018
, “
Mechanically Versatile Soft Machines Through Laminar Jamming
,”
Adv. Funct. Mater.
,
28
(
17
), p.
1707136
. 10.1002/adfm.201707136
15.
Kim
,
Y.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2012
, “
Design of a Tubular Snake-Like Manipulator With Stiffening Capability by Layer Jamming
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Portugal
,
Oct. 7–12
, pp.
4251
4256
.
16.
Kim
,
Y.
,
Cheng
,
S.
,
Kim
,
S.
, and
Iagnemma
,
K.
,
2013
, “
A Novel Layer Jamming Mechanism With Tunable Stiffness Capability for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
29
(
4
), pp.
1031
1042
. 10.1109/TRO.2013.2256313
17.
Lin
,
K.-Y.
, and
Gupta
,
S. K.
,
2017
, “Soft Fingers With Controllable Compliance to Enable Realization of Low Cost Grippers,”
Biomimetic and Biohybrid Systems
,
Mangan
,
M.
,
Cutkosky
,
M.
,
Mura
,
A.
,
Verschure
,
P. F.
,
Prescott
,
T.
,
Lepora
,
N.
, eds.,
Lecture Notes in Computer Science
,
Springer International Publishing
, pp.
544
550
.
18.
Zhu
,
M.
,
Mori
,
Y.
,
Wakayama
,
T.
,
Wada
,
A.
, and
Kawamura
,
S.
,
2019
, “
A Fully Multi-Material Three-Dimensional Printed Soft Gripper With Variable Stiffness for Robust Grasping
,”
Soft Rob.
,
6
(
4
), pp.
507
519
. 10.1089/soro.2018.0112
19.
Wall
,
V.
,
Deimel
,
R.
, and
Brock
,
O.
,
2015
, “
Selective Stiffening of Soft Actuators Based on Jamming
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
252
257
.
20.
Langer
,
M.
,
Amanov
,
E.
, and
Burgner-Kahrs
,
J.
,
2018
, “
Stiffening Sheaths for Continuum Robots
,”
Soft Rob.
,
5
(
3
), pp.
291
303
. 10.1089/soro.2017.0060
21.
Santiago
,
J. L. C.
,
Godage
,
I. S.
,
Gonthina
,
P.
, and
Walker
,
I. D.
,
2016
, “
Soft Robots and Kangaroo Tails: Modulating Compliance in Continuum Structures Through Mechanical Layer Jamming
,”
Soft Rob.
,
3
(
2
), pp.
54
63
. 10.1089/soro.2015.0021
22.
Deshpande
,
A. R.
,
Tse
,
Z. T. H.
, and
Ren
,
H.
,
2017
, “
Origami-Pnspired Bi-Directional Soft Pneumatic Actuator With Integrated Variable Stiffness Mechanism
,”
2017 18th International Conference on Advanced Robotics (ICAR)
,
Hong Kong, China
,
July 10–12
, pp.
417
421
.
23.
Hadi Sadati
,
S. M.
,
Noh
,
Y.
,
Elnaz Naghibi
,
S.
,
Kaspar
,
A.
, and
Nanayakkara
,
T.
,
2015
, “Stiffness Control of Soft Robotic Manipulator for Minimally Invasive Surgery (MIS) Using Scale Jamming,”
Intelligent Robotics and Applications
,
Liu
H.
,
Kubota
,
N.
,
Zhu
,
X.
,
Dillmann
,
R.
,
Zhou
,
D.
, eds.,
Lecture Notes in Computer Science
,
Springer International Publishing
, pp.
141
151
.
24.
Tognarelli
,
S.
,
Brancadoro
,
M.
,
Dolosor
,
V.
, and
Menciassi
,
A.
,
2018
, “
Soft Tool for Gallbladder Retraction in Minimally Invasive Surgery Based on Layer Jamming
,”
7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
,
Enschede, Netherlands
,
Aug. 26–29
, pp.
67
72
.
25.
Brancadoro
,
M.
,
Manti
,
M.
,
Grani
,
F.
,
Tognarelli
,
S.
,
Menciassi
,
A.
, and
Cianchetti
,
M.
,
2019
, “
Toward a Variable Stiffness Surgical Manipulator Based on Fiber Jamming Transition
,”
Front. Rob. AI
,
6
(
12
). 10.3389/frobt.2019.00012
26.
Dahl
,
P. R.
,
1968
, “
A Solid Friction Model
,”
AEROSPACE CORP EL SEGUNDO CA, May, Technical Report, TOR-0158(3107-18)-1
.
You do not currently have access to this content.