Abstract

Restoring human grasp functions by prosthesis is a long-standing challenge in robotics research. Aiming at prosthetic applications, this paper presents a novel anthropomorphic multi-grasp hand design. The hand is driven by only one motor, and several mechanisms were designed for enhanced functionality. First, a continuum differential mechanism (CDM) was used to generate differential finger motions and to simplify the transmission of the hand. Second, a load adaptive variable transmission (LAVT) was designed to magnify the grasp forces. Moreover, a prismatic clutch is embedded in the hand, to lower the motor's energy consumption. Myoelectric control was implemented using affordable control hardware and sensors. All the above components are integrated in the proposed prosthetic hand, which is an average adult male size and weighs 470 g (including batteries). Experiments, including a preliminary clinical evaluation, were conducted to assess the effectiveness of the hand for prosthetic use. The results show that the hand can perform various grasps and can be a viable option for transradial prosthesis.

References

1.
Belter
,
J. T.
,
Segil
,
J. L.
,
Dollar
,
A. M.
, and
Weir
,
R. F.
,
2013
, “
Mechanical Design and Performance Specifications of Anthropomorphic Prosthetic Hands: A Review
,”
J. Rehabil. Res. Dev.
,
50
(
5
), pp.
599
618
. 10.1682/JRRD.2011.10.0188
2.
Ottobock SE & Co. KGaA
,
“The Michelangelo® Hand in Practice: Therapy and Rehabilitation,” Brochure, https://www.ottobockus.com/media/local-media/prosthetics/upper-limb/michelangelo/files/michelangelo-therapy-brochure.pdf, Accessed June 15, 2020
.
3.
Touch Bionics Ltd.
, .
4.
Santello
,
M.
,
Flanders
,
M.
, and
Soechting
,
J. F.
,
1998
, “
Postural Hand Synergies for Tool Use
,”
J. Neurosci.
,
18
(
23
), pp.
10105
10115
. 10.1523/JNEUROSCI.18-23-10105.1998
5.
Wimbӧck
,
T.
,
Jahn
,
B.
, and
Hirzinger
,
G.
,
2011
, “
Synergy Level Impedance Control for Multifingered Hands
,”
Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
San Francisco, CA
,
Sept. 25–30
, pp.
973
979
.
6.
Deshpande
,
A. D.
,
Xu
,
Z.
,
Weghe
,
M. J. V.
,
Brown
,
B. H.
,
Ko
,
J.
,
Chang
,
L. Y.
,
Wilkinson
,
D. D.
,
Bidic
,
S. M.
, and
Matsuoka
,
Y.
,
2013
, “
Mechanisms of the Anatomically Correct Testbed Hand
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
238
250
. 10.1109/TMECH.2011.2166801
7.
Palli
,
G.
,
Melchiorri
,
C.
,
Vassura
,
G.
,
Scarcia
,
U.
,
Moriello
,
L.
,
Berselli
,
G.
,
Cavallo
,
A.
,
Maria
,
G. D.
,
Natale
,
C.
,
Pirozzi
,
S.
,
May
,
C.
,
Ficuciello
,
F.
, and
Siciliano
,
B.
,
2014
, “
The DEXMART Hand: Mechatronic Design and Experimental Evaluation of Synergy-Based Control for Human-Like Grasping
,”
Int. J. Robot. Res.
,
33
(
5
), pp.
799
824
. 10.1177/0278364913519897
8.
Brown
,
C. Y.
, and
Asada
,
H. H.
,
2007
, “
Inter-Finger Coordination and Postural Synergies in Robot Hands via Mechanical Implementation of Principal Components Analysis
,”
Proceedings of 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
, pp.
2877
2882
.
9.
Xu
,
K.
,
Liu
,
H.
,
Du
,
Y.
, and
Zhu
,
X.
,
2014
, “
Design of an Underactuated Anthropomorphic Hand With Mechanically Implemented Postural Synergies
,”
Adv. Robot.
,
28
(
21
), pp.
1459
1474
. 10.1080/01691864.2014.958534
10.
Xiong
,
C.-H.
,
Chen
,
W.-R.
,
Sun
,
B.-Y.
,
Liu
,
M.-J.
,
Yue
,
S.-G.
, and
Chen
,
W.-B.
,
2016
, “
Design and Implementation of an Anthropomorphic Hand for Replicating Human Grasping Functions
,”
IEEE Trans. Robot.
,
32
(
3
), pp.
652
671
. 10.1109/TRO.2016.2558193
11.
Xu
,
K.
,
Liu
,
Z.
,
Zhao
,
B.
,
Liu
,
H.
, and
Zhu
,
X.
,
2019
, “
Composed Continuum Mechanism for Compliant Mechanical Postural Synergy: An Anthropomorphic Hand Design Example
,”
Mech. Mach. Theory
,
132
, pp.
108
122
. 10.1016/j.mechmachtheory.2018.08.015
12.
Krut
,
S.
,
Bégoc
,
V.
,
Dombre
,
E.
, and
Pierrot
,
F.
,
2010
, “
Extension of the Form-Closure Property to Underactuated Hands
,”
IEEE Trans. Robot.
,
26
(
5
), pp.
853
866
. 10.1109/TRO.2010.2060830
13.
Dechev
,
N.
,
Cleghorn
,
W.
, and
Naumann
,
S.
,
2001
, “
Multiple Finger, Passive Adaptive Grasp Prosthetic Hand
,”
Mech. Mach. Theory
,
36
(
10
), pp.
1157
1173
. 10.1016/S0094-114X(01)00035-0
14.
Lenzi
,
T.
,
Lipsey
,
J.
, and
Sensinger
,
J. W.
,
2016
, “
The RIC Arm—A Small Anthropomorphic Transhumeral Prosthesis
,”
IEEE/ASME Trans. Mechatron.
,
21
(
6
), pp.
1
1
. 10.1109/TMECH.2016.2596104
15.
Pons
,
J. L.
,
Rocon
,
E.
,
Ceres
,
R.
,
Reynaerts
,
D.
,
Saro
,
B.
,
Levin
,
S.
, and
Moorleghem
,
W. V.
,
2004
, “
The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects
,”
Auton. Robots
,
16
(
2
), pp.
143
163
. 10.1023/B:AURO.0000016862.38337.f1
16.
Controzzi
,
M.
,
Clemente
,
F.
,
Barone
,
D.
,
Ghionzoli
,
A.
, and
Cipriani
,
C.
,
2017
, “
The SSSA-MyHand: A Dexterous Lightweight Myoelectric Hand Prosthesis
,”
IEEE Trans. Neural Syst. Rehab. Eng.
,
25
(
5
), pp.
459
468
. 10.1109/TNSRE.2016.2578980
17.
Baril
,
M.
,
Laliberté
,
T.
,
Gosselin
,
C.
, and
Routhier
,
F.
,
2013
, “
On the Design of a Mechanically Programmable Underactuated Anthropomorphic Prosthetic Gripper
,”
ASME J. Mech. Des.
,
135
(
12
), p.
121008
. 10.1115/1.4025493
18.
Gosselin
,
C.
,
Pelletier
,
F.
, and
Laliberte
,
T.
,
2008
, “
An Anthropomorphic Underactuated Robotic Hand With 15 Dofs and a Single Actuator
,”
Proceedings of 2008 IEEE International Conference on Robotics and Automation (ICRA)
,
Pasadena, CA
,
May 19–23
, pp.
749
754
.
19.
Belter
,
J. T.
, and
Dollar
,
A. M.
,
2013
, “
Novel Differential Mechanism Enabling Two DOF From a Single Actuator: Application to a Prosthetic Hand
,”
Proceedings of 2013 IEEE International Conference on Rehabilitation Robotics (ICORR)
,
Seattle, WA
,
June 24–26
, pp.
1
6
.
20.
Catalano
,
M. G.
,
Grioli
,
G.
,
Farnioli
,
E.
,
Serio
,
A.
,
Piazza
,
C.
, and
Bicchi
,
A.
,
2014
, “
Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand
,”
Int. J. Robot. Res.
,
33
(
5
), pp.
768
782
. 10.1177/0278364913518998
21.
Piazza
,
C.
,
Catalano
,
M. G.
,
Godfrey
,
S. B.
,
Rossi
,
M.
,
Grioli
,
G.
,
Bianchi
,
M.
,
Zhao
,
K.
, and
Bicchi
,
A.
,
2017
, “
The SoftHand Pro-H: A Hybrid Body-Controlled, Electrically Powered Hand Prosthesis for Daily Living and Working
,”
IEEE Robot. Autom. Mag.
,
24
(
4
), pp.
87
101
. 10.1109/MRA.2017.2751662
22.
Biddiss
,
E.
,
Beaton
,
D.
, and
Chau
,
T.
,
2007
, “
Consumer Design Priorities for Upper Limb Prosthetics
,”
Disabil. Rehabil.: Assist. Technol.
,
2
(
6
), pp.
346
357
. 10.1080/17483100701714733
23.
Cipriani
,
C.
,
Controzzi
,
M.
, and
Carrozza
,
M. C.
,
2010
, “
Objectives, Criteria and Methods for the Design of the SmartHand Transradial Prosthesis
,”
Robotica
,
28
(
6
), pp.
919
927
. 10.1017/S0263574709990750
24.
Vinet
,
R.
,
Lozac'h
,
Y.
,
Beaudry
,
N.
, and
Drouin
,
G.
,
1995
, “
Design Methodology for a Multifunctional Hand Prosthesis
,”
J. Rehabil. Res. Dev.
,
32
(
4
), p.
316
.
25.
Østlie
,
K.
,
Lesjø
,
I. M.
,
Franklin
,
R. J.
,
Garfelt
,
B.
,
Skjeldal
,
O. H.
, and
Magnus
,
P.
,
2012
, “
Prosthesis Rejection in Acquired Major Upper-Limb Amputees: A Population-Based Survey
,”
Disabil. Rehabil.: Assist. Technol.
,
7
(
4
), pp.
294
303
. 10.3109/17483107.2011.635405
26.
Birglen
,
L.
,
Gosselin
,
C.
, and
Laliberté
,
T.
,
2008
,
Underactuated Robotic Hands
,
Springer
,
New York
.
27.
Lovchik
,
C. S.
, and
Diftler
,
M. A.
,
1999
, “
The Robonaut Hand: A Dexterous Robot Hand for Space
,”
Proceedings of 1999 IEEE International Conference on Robotics and Automation (ICRA)
,
Detroit, MI
,
May 10–15
, pp.
907
912
.
28.
Kawasaki
,
H.
,
Komatsu
,
T.
, and
Uchiyama
,
K.
,
2002
, “
Dexterous Anthropomorphic Robot Hand With Distributed Tactile Sensor: Gifu Hand II
,”
IEEE/ASME Trans. Mechatron.
,
7
(
3
), pp.
296
303
. 10.1109/TMECH.2002.802720
29.
Liu
,
H.
,
Meusel
,
P.
,
Seitz
,
N.
,
Willberg
,
B.
,
Hirzinger
,
G.
,
Jin
,
M. H.
,
Liu
,
Y. W.
,
Wei
,
R.
, and
Xie
,
Z. W.
,
2007
, “
The Modular Multisensory DLR-HIT-Hand
,”
Mech. Mach. Theory
,
42
(
5
), pp.
612
625
. 10.1016/j.mechmachtheory.2006.04.013
30.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2006
, “
Force Analysis of Connected Differential Mechanisms: Application to Grasping
,”
Int. J. Robot. Res.
,
25
(
10
), pp.
1033
1046
. 10.1177/0278364906068942
31.
Xu
,
K.
, and
Liu
,
H.
,
2016
, “
Continuum Differential Mechanisms and Their Applications in Gripper Designs
,”
IEEE Trans. Robot.
,
32
(
3
), pp.
754
762
. 10.1109/TRO.2016.2561295
32.
Schulz
,
G. R.
,
1994
,”
End Effector With Load-Sensitive Digit Actuation Mechanisms
,
USPTO
, ed.,
Odetics, Inc.
,
Anaheim, CA
, p.
21
.
33.
Takaki
,
T.
, and
Omata
,
T.
,
2006
, “
100g-100N Finger Joint With Load-Sensitive Continuously Variable Transmission
,”
Proceedings of 2006 IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
, pp.
976
981
.
34.
Takaki
,
T.
, and
Omata
,
T.
,
2011
, “
High-performance Anthropomorphic Robot Hand With Grasping-Force-Magnification Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
16
(
3
), pp.
583
591
. 10.1109/TMECH.2010.2047866
35.
O'Brien
,
K. W.
,
Xu
,
P. A.
,
Levine
,
D. J.
,
Aubin
,
C. A.
,
Yang
,
H.-J.
,
Xiao
,
M. F.
,
Wiesner
,
L. W.
, and
Shepherd
,
R. F.
,
2018
, “
Elastomeric Passive Transmission for Autonomous Force-Velocity Adaptation Applied to 3D-Printed Prosthetics
,”
Sci. Robot.
,
3
(
23
), p.
eaau5543
. 10.1126/scirobotics.aau5543
36.
Plooij
,
M.
,
Mathijssen
,
G.
,
Cherelle
,
P.
,
Lefeber
,
D.
, and
Vanderborght
,
B.
,
2015
, “
Lock Your Robot: A Review of Locking Devices in Robotics
,”
IEEE Robot. Autom. Mag.
,
22
(
1
), pp.
106
117
. 10.1109/mra.2014.2381368
37.
Controzzi
,
M.
,
Cipriani
,
C.
, and
Carrozza
,
M. C.
,
2010
, “
Miniaturized Non-Back-Drivable Mechanism for Robotic Applications
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1395
1406
. 10.1016/j.mechmachtheory.2010.05.008
38.
Calli
,
B.
,
Walsman
,
A.
,
Singh
,
A.
,
Srinivasa
,
S.
,
Abbeel
,
P.
, and
Dollar
,
A. M.
,
2015
, “
Benchmarking in Manipulation Research: Using the Yale-CMU-Berkeley Object and Model Set
,”
IEEE Robot. Autom. Mag.
,
22
(
3
), pp.
36
52
. 10.1109/MRA.2015.2448951
39.
Hill
,
W.
,
Kyberd
,
P.
,
Hermansson
,
L. N.
,
Hubbard
,
S.
,
Stavdahl
,
Ø
, and
Swanson
,
S.
,
2009
, “
Upper Limb Prosthetic Outcome Measures (ULPOM): A Working Group and Their Findings
,”
J. Prosthet. Orthot.
,
21
(
21
), pp.
P69
P82
. 10.1097/JPO.0b013e3181ae970b
40.
Mathiowetz
,
V.
,
Volland
,
G.
,
Kashman
,
N.
, and
Weber
,
K.
,
1985
, “
Adult Norms for the Box and Block Test of Manual Dexterity
,”
Am. J. Occup. Ther.
,
39
(
6
), pp.
386
391
. 10.5014/ajot.39.6.386
41.
Miller
,
L. A.
,
Stubblefield
,
K. A.
,
Lipschutz
,
R. D.
,
Lock
,
B. A.
, and
Kuiken
,
T. A.
,
2008
, “
Improved Myoelectric Prosthesis Control Using Targeted Reinnervation Surgery: A Case Series
,”
IEEE Trans. Neural Syst. Rehabilitation Eng.
,
16
(
1
), pp.
46
50
. 10.1109/TNSRE.2007.911817
You do not currently have access to this content.