Abstract

An important step in the structural synthesis of kinematic chains (KCs) or mechanisms is the detection of isomorphic structures. Although many detection methods have been proposed, most of them require complex computations and have poor versatility. In this study, a simple detection method is proposed based on a compound topological invariant (CTI), which comprises the fourth power of adjacency matrix and eigenvalues. Besides two complex 15- and 28-link planar simple-joint KCs (PSKCs), the method is tested on the complete atlas of contracted graphs with up to six independent loops, PSKCs with up to 13 links, 8-link 1-degree-of-freedom (DOF) planar multiple-joint KCs (PMKCs), and 6-link 1-DOF planetary gear trains (PGTs). All the results are in agreement with the reported results in the literature. Our method possesses good versatility and has been verified as being reliable and efficient.

References

1.
Freudenstein
,
F.
,
1967
, “
The Basic Concepts of Polya’s Theory of Enumeration, With Application to the Structural Classification of Mechanisms
,”
J. Mech.
,
2
(
3
), pp.
275
290
. 10.1016/0022-2569(67)90003-1
2.
Tsai
,
L. W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton, FL
.
3.
Dai
,
J. S.
,
2014
,
Screw Algebra and Kinematic Approaches for Mechanisms and Robotics
,
Springer
,
London
.
4.
Dai
,
J. S.
,
2015
, “
Euler–Rodrigues Formula Variations, Quaternion Conjugation and Intrinsic Connections
,”
Mech. Mach. Theory
,
92
, pp.
144
152
. 10.1016/j.mechmachtheory.2015.03.004
5.
Chen
,
Y.
,
Feng
,
J.
, and
Sun
,
Q.
,
2018
, “
Lower-Order Symmetric Mechanism Modes and Bifurcation Behavior of Deployable Bar Structures With Cyclic Symmetry
,”
Int. J. Solids Struct.
,
139
, pp.
1
14
. 10.1016/j.ijsolstr.2017.05.008
6.
Chen
,
Y.
,
Sareh
,
P.
,
Yan
,
J.
,
Fallah
,
A. S.
, and
Feng
,
J.
,
2019
, “
An Integrated Geometric-Graph-Theoretic Approach to Representing Origami Structures and Their Corresponding Truss Frameworks
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091402
. 10.1115/1.4042791
7.
Mruthyunjaya
,
T.
,
2003
, “
Kinematic Structure of Mechanisms Revisited
,”
Mech. Mach. Theory
,
38
(
4
), pp.
279
320
. 10.1016/S0094-114X(02)00120-9
8.
Uicker
,
J.
, Jr.
, and
Raicu
,
A.
,
1975
, “
A Method for the Identification and Recognition of Equivalence of Kinematic Chains
,”
Mech. Mach. Theory
,
10
(
5
), pp.
375
383
. 10.1016/0094-114X(75)90037-3
9.
Yan
,
H. S.
, and
Hwang
,
W. M.
,
1983
, “
A Method for the Identification of Planar Linkage Chains
,”
J. Mech. Transm. Autom. Des.
,
105
(
4
), pp.
658
662
. 10.1115/1.3258531
10.
Mruthyunjaya
,
T.
, and
Balasubramanian
,
H.
,
1987
, “
In Quest of a Reliable and Efficient Computational Test for Detection of Isomorphism in Kinematic Chains
,”
Mech. Mach. Theory
,
22
(
2
), pp.
131
139
. 10.1016/0094-114X(87)90036-X
11.
He
,
P.
,
Zhang
,
W.
, and
Li
,
Q.
,
2005
, “
Some Further Development on the Eigensystem Approach for Graph Isomorphism Detection
,”
J. Franklin Inst.
,
342
(
6
), pp.
657
673
. 10.1016/j.jfranklin.2005.04.006
12.
He
,
P.
,
Zhang
,
W.
,
Li
,
Q.
, and
Wu
,
F.
,
2003
, “
A New Method for Detection of Graph Isomorphism Based on the Quadratic Form
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
640
642
. 10.1115/1.1564574
13.
Cubillo
,
J.
, and
Wan
,
J.
,
2005
, “
Comments on Mechanism Kinematic Chain Isomorphism Identification Using Adjacent Matrices
,”
Mech. Mach. Theory
,
40
(
2
), pp.
131
139
. 10.1016/j.mechmachtheory.2004.07.004
14.
Sunkari
,
R. P.
, and
Schmidt
,
L. C.
,
2006
, “
Reliability and Efficiency of the Existing Spectral Methods for Isomorphism Detection
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1246
1252
. 10.1115/1.2336253
15.
Ambekar
,
A.
, and
Agrawal
,
V.
,
1987
, “
Canonical Numbering of Kinematic Chains and Isomorphism Problem: Min Code
,”
Mech. Mach. Theory
,
22
(
5
), pp.
453
461
. 10.1016/0094-114X(87)90062-0
16.
Hsu
,
C. H.
,
1992
, “
Enumeration of Basic Kinetic Chains With Simple and Multiple Joints
,”
J. Franklin Inst.
,
329
(
4
), pp.
775
789
. 10.1016/0016-0032(92)90088-X
17.
Tang
,
C.
, and
Liu
,
T.
,
1993
, “
The Degree Code—A New Mechanism Identifier
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
627
627
. 10.1115/1.2919236
18.
Kim
,
J. T.
, and
Kwak
,
B. M.
,
1992
, “
An Algorithm of Topological Ordering for Unique Representation of Graphs
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
103
108
. 10.1115/1.2916902
19.
Shin
,
J. K.
, and
Krishnamurty
,
S.
,
1993
, “
Standard Code Technique in the Enumeration of Epicyclic Gear Trains
,”
Mech. Mach. Theory
,
28
(
3
), pp.
347
355
. 10.1016/0094-114X(93)90075-7
20.
Rai
,
R. K.
,
2019
, “
A New Algorithm of Links Labelling for the Isomorphism Detection of Various Kinematic Chains Using Binary Code
,”
Mech. Mach. Theory
,
131
, pp.
1
32
. 10.1016/j.mechmachtheory.2018.09.010
21.
Rai
,
R. K.
, and
Punjabi
,
S.
,
2018
, “
Kinematic Chains Isomorphism Identification Using Link Connectivity Number and Entropy Neglecting Tolerance and Clearance
,”
Mech. Mach. Theory
,
123
, pp.
40
65
. 10.1016/j.mechmachtheory.2018.01.013
22.
Rao
,
A.
, and
Raju
,
D. V.
,
1991
, “
Application of the Hamming Number Technique to Detect Isomorphism Among Kinematic Chains and Inversions
,”
Mech. Mach. Theory
,
26
(
1
), pp.
55
75
. 10.1016/0094-114X(91)90022-V
23.
Rao
,
A.
, and
Rao
,
C.
,
1993
, “
Loop Based Pseudo Hamming Values—I Testing Isomorphism and Rating Kinematic Chains
,”
Mech. Mach. Theory
,
28
(
1
), pp.
113
127
. 10.1016/0094-114X(93)90051-V
24.
Dharanipragada
,
V.
, and
Chintada
,
M.
,
2016
, “
Split Hamming String as an Isomorphism Test for One Degree-of-Freedom Planar Simple-Jointed Kinematic Chains Containing Sliders
,”
ASME J. Mech. Des.
,
138
(
8
), p.
082301
. 10.1115/1.4033611
25.
Yadav
,
J.
,
Pratap
,
C.
, and
Agrawal
,
V.
,
1996
, “
Computer Aided Detection of Isomorphism Among Binary Chains Using the Link-Link Multiplicity Distance Concept
,”
Mech. Mach. Theory
,
31
(
7
), pp.
873
877
. 10.1016/0094-114X(96)00002-X
26.
Dube
,
R.
, and
Rao
,
A.
,
2013
, “
New Characteristic Polynomial—A Reliable Index to Detect Isomorphism Between Kinematic Chains
,”
J. Indian Inst. Sci.
,
66
(
4
), p.
227
.
27.
Kamesh
,
V. V.
,
Rao
,
K. M.
, and
Rao
,
A. B. S.
,
2017
, “
An Innovative Approach to Detect Isomorphism in Planar and Geared Kinematic Chains Using Graph Theory
,”
ASME J. Mech. Des.
,
139
(
12
), p.
122301
. 10.1115/1.4037628
28.
Ding
,
H. F.
, and
Huang
,
Z.
,
2007
, “
The Establishment of the Canonical Perimeter Topological Graph of Kinematic Chains and Isomorphism Identification
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
915
923
. 10.1115/1.2748451
29.
Ding
,
H. F.
, and
Huang
,
Z.
,
2009
, “
Isomorphism Identification of Graphs: Especially for the Graphs of Kinematic Chains
,”
Mech. Mach. Theory
,
44
(
1
), pp.
122
139
. 10.1016/j.mechmachtheory.2008.02.008
30.
Ding
,
H. F.
,
Hou
,
F. M.
,
Kecskeméthy
,
A.
, and
Huang
,
Z.
,
2011
, “
Synthesis of a Complete Set of Contracted Graphs for Planar Non-Fractionated Simple-Jointed Kinematic Chains With All Possible DOFs
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1588
1600
. 10.1016/j.mechmachtheory.2011.07.012
31.
Chen
,
Y.
, and
Feng
,
J.
,
2016
, “
Improved Symmetry Method for the Mobility of Regular Structures Using Graph Products
,”
J. Struct. Eng.
,
142
(
9
), p.
04016051
. 10.1061/(ASCE)ST.1943-541X.0001512
32.
Kaveh
,
A.
, and
Alinejad
,
B.
,
2009
, “
A General Theorem for Adjacency Matrices of Graph Products and Application in Graph Partitioning for Parallel Computing
,”
Finite Elem. Anal. Des.
,
45
(
3
), pp.
149
155
. 10.1016/j.finel.2008.09.002
33.
Ding
,
H. F.
,
Yang
,
W. J.
,
Zi
,
B.
, and
Kecskeméthy
,
A.
,
2016
, “
The Family of Planar Kinematic Chains With Two Multiple Joints
,”
Mech. Mach. Theory
,
99
, pp.
103
116
. 10.1016/j.mechmachtheory.2016.01.003
34.
Yang
,
W. J.
,
Ding
,
H. F.
,
Zi
,
B.
, and
Zhang
,
D.
,
2018
, “
New Graph Representation for Planetary Gear Trains
,”
ASME J. Mech. Des.
,
140
(
1
), p.
012303
. 10.1115/1.4038303
35.
Shanmukhasundaram
,
V. R.
,
Rao
,
Y. V. D.
, and
Regalla
,
S. P.
,
2019
, “
Enumeration of Displacement Graphs of Epicyclic Gear Train From a Given Rotation Graph Using Concept of Building of Kinematic Units
,”
Mech. Mach. Theory
,
134
, pp.
393
424
. 10.1016/j.mechmachtheory.2019.01.005
You do not currently have access to this content.