Abstract

This paper proposes a method to deal with the orientation uncertainty problem affected by joint clearances. To solve this problem, it is necessary to establish the theory of mobility of the floating link of multi-loop linkages. Since the theory of the mobility of floating link is yet complete, this paper provides a simple treatment to determine the rotatability between any two links, adjoined or not, in planar multi-loop linkages. The rotation angle of the floating link with respect to the reference link is defined so that there is no ambiguity in analyzing the rotation range of the floating link. Based on the joint rotation space (JRS) method, one may identify not only the branch formation but also the rotatability between any two links on each of the branches. It is a visualized method that reveals the rotation characteristic of multi-loop linkages. This paper demonstrates the rotation range of the floating link with respect to the reference link on six-bar Stephenson linkages, 2-degree-of-freedom (DOF). 7-bar linkages, and 3-DOF. Eight-bar parallel manipulators. This might be the first paper to deal with the rotatability of 3-DOF planar multi-loop linkages. This paper uses the method to predict the clearance-induced angle uncertainty of the 8-bar parallel manipulators, which determines the worst orientation error of the end-effector and fills up the void of the joint clearance uncertainty model proposed by Ting et al. (2017, “Clearance-Induced Position Uncertainty of Planar Linkages and Parallel Manipulators,” J. Mech. Rob., 9, p. 061001).

References

1.
Grashof
,
F.
,
1883
,
Theoretische Maschinenlehre: Bd. Theorie Der Getriebe Und Der Mechanischen Messinstrumente
, Vol.
2
,
L. Voss
,
Hamburg und Leipzig
.
2.
Ting
,
K.-L.
, and
Dou
,
X.
,
1996
, “
Classification and Branch Identification of Stephenson Six-Bar Chains
,”
Mech. Mach. Theory.
,
31
(
3
), pp.
283
295
. 10.1016/0094-114X(95)00075-A
3.
Dou
,
X.
, and
Ting
,
K.-L.
,
1998
, “
Module Approach for Branch Analysis of Multiloop Linkages/manipulators
,”
Mech. Mach. Theory
,
33
(
5
), pp.
565
582
. 10.1016/S0094-114X(97)00069-4
4.
Ting
,
K.-L.
,
Xue
,
C.
,
Wang
,
J.
, and
Currie
,
K. R.
,
2009
, “
Stretch Rotation and Complete Mobility Identification of Watt Six-Bar Chains
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1877
1886
. 10.1016/j.mechmachtheory.2009.03.011
5.
Ting
,
K.-L.
,
Wang
,
J.
,
Xue
,
C.
, and
Currie
,
K. R.
,
2010
, “
Full Rotatability and Singularity of Six-Bar and Geared Five-Bar Linkages
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011011
. 10.1115/1.4000517
6.
Mirth
,
J. A.
, and
Chase
,
T. R.
,
1993
, “
Circuit Analysis of Watt Chain Six-Bar Mechanisms
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
214
222
. 10.1115/1.2919180
7.
Chase
,
T. R.
, and
Mirth
,
J. A.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
. 10.1115/1.2919181
8.
Mirth
,
J. A.
, and
Chase
,
T. R.
,
1995
, “
Circuit Rectification for Four Precision Position Synthesis of Stephenson Six-Bar Linkages
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
644
645
. 10.1115/1.2826734
9.
Davis
,
H.
,
Chase
,
T.
, and
Mirth
,
J.
,
1994
, “
Circuit Analysis of Stephenson Chain Six-Bar Mechanisms
,”
ASME DETC, Mech. Des. Synth.
,
70
(
Part 1 of 3
), pp.
349
358
.
10.
Watanabe
,
K.
, and
Katoh
,
H.
,
2004
, “
Identification of Motion Domains of Planar Six-Link Mechanisms of the Stephenson-Type
,”
Mech. Mach. Theory
,
39
(
10
), pp.
1081
1099
. 10.1016/j.mechmachtheory.2003.12.003
11.
Foster
,
D. E.
, and
Cipra
,
R. J.
,
1998
, “
Assembly Configurations and Branches of Planar Single-Input Dyadic Mechanisms
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
381
386
. 10.1115/1.2829162
12.
Tsai
,
C.
, and
Wang
,
L. T.
,
2007
, “
Branch Identification and Motion Domain Analysis of Stephenson Type Six-Bar Linkages
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
221
(
5
), pp.
589
604
. 10.1243/0954406JMES534
13.
Duffy
,
J.
,
1980
,
Analysis of Mechanisms and Robot Manipulators
,
Edward Arnold
,
London
.
14.
Koivo
,
A.
,
1989
,
Fundamentals for Control of Robotic Manipulators
,
John Wiley & Sons, Inc
,
New York
.
15.
Angeles
,
J.
, and
Angeles
,
J.
,
2002
,
Fundamentals of Robotic Mechanical Systems
, Vol.
2
,
Springer
,
New York
.
16.
Ting
,
K.-L.
, and
Shyu
,
J.
,
1992
, “
Joint Rotation Space of Five-Bar Linkages
,”
ASME DTC
,
Scottsdale, AZ
,
Sept. 13–16
, pp.
93
101
.
17.
Foster
,
D. E.
, and
Cipra
,
R. J.
,
2002
, “
An Automatic Method for Finding the Assembly Configurations of Planar Non-Single-Input-Dyadic Mechanisms
,”
ASME J. Mech. Des.
,
124
(
1
), pp.
58
67
. 10.1115/1.1425813
18.
Ting
,
K.-L.
,
Hsu
,
K.-L.
, and
Wang
,
J.
,
2017
, “
Clearance-Induced Position Uncertainty of Planar Linkages and Parallel Manipulators
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061001
. 10.1115/1.4037619
19.
Earles
,
S.
, and
Wu
,
C.
,
1973
, “
Motion Analysis of a Rigid Link Mechanism With Clearance at a Bearing Using Lagrangian Mechanics and Digital Computation
,”
Mechanisms (Proc., Inst. Mech. Eng.)
,
1
(
1
), pp.
83
89
.
20.
Foster
,
D.
, and
Cipra
,
R.
,
1998
, “
Assembly Configurations of Single-Loop Mechanisms With Pin Joints and Sliding Joints
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
387
391
. 10.1115/1.2829163
21.
Foster
,
D. E.
, and
Cipra
,
R. J.
,
2006
, “
Assembly Configurations of Planar Multi-Loop Mechanisms With Kinematic Limitations
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
747
754
. 10.1115/1.2202143
22.
Koenigs
,
G.
,
1897
,
Leçons De Cinématique
,
Hermann
,
Paris
.
23.
Ting
,
K.-L.
, and
Liu
,
Y.-W.
,
1991
, “
Rotatability Laws for N-Bar Kinematic Chains and Their Proof
,”
ASME J. Mech. Des.
,
113
(
1
), pp.
32
39
. 10.1115/1.2912747
24.
Burdick
,
J. W.
,
1988
, “
Kinematic Analysis and Design of Redundant Robot Manipulators
,” Ph.D. thesis,
Department of Computer Science, Stanford University
.
25.
Shyu
,
J.-H.
, and
Ting
,
K.-L.
,
1994
, “
Invariant Link Rotatability of N-bar Kinematic Chains
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
343
347
. 10.1115/1.2919371
26.
Ting
,
K.-L.
,
2008
, “
On the Input Joint Rotation Space and Mobility of Linkages
,”
ASME J. Mech. Des.
,
130
(
9
), p.
092303
. 10.1115/1.2943299
You do not currently have access to this content.