Abstract

Microspine grippers address a large variety of possible applications, especially in field robotics and manipulation in extreme environments. Predicting and modeling the gripper behavior remains a major challenge to this day. One of the most complex aspects of these predictions is how to model the spine to rock interaction of the spine tip with the local asperity. This paper proposes a single spine model, in order to fill the gap of knowledge in this specific field. A new model for the anchoring resistance of a single spine is proposed and discussed. The model is then applied to a simulation campaign. With the aid of simulations and analytic functions, we correlated performance characteristics of a spine with a set of quantitative, macroscopic variables related to the spine, the substrate and its usage. Eventually, this paper presents some experimental comparison tests and discusses traversal phenomena observed during the tests.

References

1.
Zani
,
P. A.
,
2000
, “
The Comparative Evolution of Lizard Claw and Toe Morphology and Clinging Performance
,”
J. Evol. Biol.
,
13
(
2
), pp.
316
325
. 10.1046/j.1420-9101.2000.00166.x
2.
Lixin
,
W.
,
Qiang
,
Z.
, and
Shuyan
,
X. U.
,
2011
, “
Role of Locust Locusta Migratoria Manilensis Claws and Pads in Attaching to Substrates
,”
Chinese Sci. Bull.
,
56
(
8
), pp.
789
795
. 10.1007/s11434-010-4162-8
3.
Han
,
L.
,
Wang
,
Z.
,
Ji
,
A.
, and
Dai
,
Z.
,
2011
, “
Grip and Detachment of Locusts on Inverted Sandpaper Substrates
,”
Bioinsp. Biomim
,
6
(
4
), p.
046005
. 10.1088/1748-3182/6/4/046005
4.
Dai
,
Z.
,
Gorb
,
S. N.
, and
Schwarz
,
U.
,
2002
, “
Roughness-Dependent Friction Force of the Tarsal Claw System in the Beetle Pachnoda Marginata (Coleoptera, Scarabaeidae)
,”
J. Exp. Biol
,
205
(
16
), pp.
2479
2488
.
5.
Asbeck
,
A. T.
, and
Cutkosky
,
M. R.
,
2012
, “
Designing Compliant Spine Mechanisms for Climbing
,”
ASME J. Mech. Rob.
,
4
, pp.
1
8
. 10.1115/1.40066591
6.
Parness
,
A.
,
Evans
,
T.
,
Raff
,
W.
,
King
,
J.
,
Carpenter
,
K.
,
Willig
,
A.
,
Grimes-york
,
J.
,
Berg
,
A.
,
Fouad
,
E.
, and
Wiltsie
,
N.
,
2017
, “
Maturing Microspine Grippers for Space Applications Through Test Campaigns
,”
AIAA SPACE and Astronautics Forum and Exposition 2017
,
Orlando, FL
.
7.
Parness
,
A.
,
2017
, “
Science Objectives and Rover Design for a Limbed Comet Rover Mission Concept
,”
2017 IEEE Aerospace Conference
,
Big Sky, MT
, IEEE, pp.
1
7
.
8.
Parness
,
A.
,
Willig
,
A.
,
Berg
,
A.
,
Shekels
,
M.
,
Arutyunov
,
V.
,
Dandino
,
C.
, and
Kennedy
,
B.
,
2017
, “
A Microspine Tool: Grabbing and Anchoring to Boulders on the Asteroid Redirect Mission
,”
2017 IEEE Aerospace Conference
,
Big Sky, MT
.
9.
Wang
,
S.
,
Jiang
,
H.
, and
Cutkosky
,
M. R.
,
2017
, “
Design and Modeling of Linearly-Constrained Compliant Spines for Human-Scale Locomotion on Rocky Surfaces
,”
Int. J. Robot. Res.
,
36
(
9
), pp.
985
999
. 10.1177/0278364917720019
10.
Spenko
,
M.
,
Haynes
,
G. C.
,
Saunders
,
J.
,
Cutkosky
,
M. R.
, and
Rizzi
,
A. A.
,
2008
, “
Biologically Inspired Climbing with a Hexapedal Robot
,”
J. Field Robot.
,
25
(
4–5
), pp.
223
242
. 10.1002/rob.20238
11.
Asbeck
,
A. T.
,
Kim
,
S.
,
McClung
,
A.
,
Parness
,
A.
, and
Cutkosky
,
M. R.
,
2006
, “
Climbing Walls with Microspines
,”
IEEE ICRA 2006
,
Orlando, FL
, pp.
4315
4317
.
12.
Spenko
,
M.
,
Cutkosky
,
M.
,
Majidi
,
C.
,
Fearing
,
R. S.
,
Groff
,
R.
, and
Autumn
,
K.
,
2006
, “
Foot Design and Integration for Bioinspired Climbing Robots
,”
Unmanned Syst. Tech.
,
6230
, p.
623019
. 10.1117/12.665874
13.
Kim
,
S.
,
Asbeck
,
A. T.
,
Cutkosky
,
M. R.
, and
Provancher
,
W. R.
,
2005
, “
SpinybotII: Climbing Hard Walls with Compliant Microspines
,”
ICAR’05. 12th International Conference on Advanced Robotics
,
Seattle, WA
.
14.
Wang
,
S.
,
Jiang
,
H.
, and
Cutkosky
,
M. R.
,
2016
, “
A Palm for a Rock Climbing Robot Based on Dense Arrays of Micro-Spines
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
.
15.
Carpenter
,
K.
,
Wiltsie
,
N.
, and
Parness
,
A.
,
2016
, “
Rotary Microspine Rough Surface Mobility
,”
IEEE/ASME Trans. Mechatron.
,
21
(
5
), pp.
2378
2390
. 10.1109/TMECH.2015.2511012
16.
Parness
,
A.
,
2011
, “
Anchoring Foot Mechanisms for Sampling and Mobility in Microgravity
,”
2011 IEEE International Conference on Robotics and Automation
,
Shangai, China
, pp.
6596
6599
.
17.
Provancher
,
W. R.
,
Clark
,
J. E.
,
Geisler
,
B.
, and
Cutkosky
,
M. R.
,
2005
,
Towards Penetration-Based Clawed Climbing
,
Springer, Berlin
,
Heidelberg
, pp.
961
970
.
18.
Parness
,
A.
,
Frost
,
M.
,
King
,
J. P.
,
Witkoe
,
K.
,
Nevarez
,
M.
,
Garrett
,
M.
,
Aghazarian
,
H.
, and
Kennedy
,
B.
,
2013
, “
Gravity-Independent Rock-Climbing Robot and a Sample Acquisition Tool with Microspine Grippers
,”
J. Field Robot
,
30
(
6
), pp.
897
915
. 10.1002/rob.21476
19.
Asbeck
,
A. T.
,
Kim
,
S.
,
Cutkosky
,
M. R.
,
Provancher
,
W. R.
, and
Lanzetta
,
M.
,
2006
, “
Scaling Hard Vertical Surfaces With Compliant Microspine Arrays
,”
Inter. J. Robot. Res
,
25
(
12
), pp.
1165
1179
. 10.15607/rss.2005.i.026
20.
Hauser
,
K.
,
Wang
,
S.
, and
Cutkosky
,
M.
,
2018
, “
Efficient Equilibrium Testing Under Adhesion and Anisotropy Using Empirical Contact Force Models
,”
IEEE Trans. Robot
,
34
(
5
), pp.
1157
1169
. 10.1109/tro.2018.2831722
21.
Jiang
,
H.
,
Wang
,
S.
, and
Cutkosky
,
M. R.
,
2018
, “
Stochastic Models of Compliant Spine Arrays for Rough Surface Grasping
,”
Inter. J. Robot. Res.
,
37
(
7
), pp.
669
687
. 10.1177/0278364918778350
22.
Momber
,
A. W.
,
2004
, “
Damage to Rocks and Cementitious Materials From Solid Impact
,”
Rock Mech. Rock Engin.
,
37
(
1
), pp.
57
82
. 10.1007/s00603-003-0012-1
23.
Gercek
,
H. Ã.
,
2007
, “
Poisson’s Ratio Values for Rocks
,”
Inter. J. Rock Mech. Mining Sci.
,
44
(
1
), pp.
1
13
. 10.1016/j.ijrmms.2006.04.011
24.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
, 9th ed.,
Cambridge University Press
,
Cambridge
.
25.
Burchell
,
T. D.
, and
Erdman
,
D.
,
2008
, “
The Shear Fracture Toughness, K IIc, of Graphite The Shear Fracture Toughness, K IIc, of Graphite
,” pp.
1
31
.
26.
Gaffney
,
E.
,
1976
, “
Measurements of Dynamic Friction Between Rock and Steel
,”
Technical Report
,
Systems Science and Software
,
La Jolla, CA
.
27.
Golewski
,
G.
, and
Sadowski
,
T.
,
2014
, “
An Analysis of Shear Fracture Toughness Kiic and Microstructure in Concretes Containing Fly-Ash
,”
Constr. Build. Mater.
,
51
, pp.
207
214
. 10.1016/j.conbuildmat.2013.10.044
28.
Backers
,
T.
,
2005
, “
Fracture Toughness Determination and Micromechanics of Rock Under Mode I And Mode II Loading
,”
Diss. GeoForschungsZentrum
.
You do not currently have access to this content.