Abstract

This study presents an optimization approach for the design of a piping inspection robot. A rigid bio-inspired piping inspection robot that moves like a caterpillar was designed and developed at LS2N, France. By the addition of tensegrity mechanisms between the motor modules, the mobile robot becomes flexible to pass through the bends. However, the existing motor units prove to be oversized for passing through pipe bends at 90 deg. Thus, three cascading optimization problems are presented in this article to determine the sizing of robot assembly that can overcome such pipe bends. The first problem deals with the identification of design parameters of the tensegrity mechanism based on static stability. Followed by that, in the second problem, the optimum design parameters of the robot modules are determined for the robot assembly without the presence of leg mechanisms. The third problem deals with the determination of the size of the leg mechanism for the results of the two previous optimization problems. A digital model of the optimized robot assembly is then realized using cad software.

References

1.
Choi
,
H. R.
, and
Roh
,
S. G.
,
2007
, “In-Pipe Robot With Active Steering Capability for Moving Inside of Pipelines,”
Bioinspiration and Robotics Walking and Climbing Robots
,
M. K.
Habib
, ed.,
Chap. 23, IntechOpen
.
2.
Okamoto Jr
,
J.
,
Adamowski
,
J. C.
,
Tsuzuki
,
M. S.
,
Buiochi
,
F.
, and
Camerini
,
C. S.
,
1999
, “
Autonomous System for Oil Pipelines Inspection
,”
Mechatronics
,
9
(
7
), pp.
731
743
.
3.
Okada
,
T.
, and
Kanade
,
T.
,
1987
, “
A Three-Wheeled Self-Adjusting Vehicle in a Pipe, Ferret-1
,”
Int. J. Rob. Res.
,
6
(
4
), pp.
60
75
.
4.
Roman
,
H. T.
,
Pellegrino
,
B.
, and
Sigrist
,
W.
,
1993
, “
Pipe Crawling Inspection Robots: An Overview
,”
IEEE Trans. Energy Conversion
,
8
(
3
), pp.
576
583
.
5.
Ryew
,
S.
,
Baik
,
S.
,
Ryu
,
S.
,
Jung
,
K. M.
,
Roh
,
S.
, and
Choi
,
H. R.
,
2000
, “
In-pipe Inspection Robot System with Active Steering Mechanism
,”
Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000)
, (Cat. No. 00CH37113)
, Takamatsu, Japan
Vol.
3
,
IEEE
, pp.
1652
1657
.
6.
Neubauer
,
W.
,
1994
, “
A Spider-Like Robot That Climbs Vertically in Ducts Or Pipes
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94)
,
Munich, Germany
, Vol.
2
,
IEEE
, pp.
1178
1185
.
7.
Fukuda
,
T.
,
Hosokai
,
H.
, and
Uemura
,
M.
,
1989
, “
Rubber Gas Actuator Driven by Hydrogen Storage Alloy for In-Pipe Inspection Mobile Robot With Flexible Structure
,”
Proceedings of the 1989 International Conference on Robotics and Automation
,
Scottsdale, AZ
,
IEEE
, pp.
1847
1852
.
8.
Horodinca
,
M.
,
Doroftei
,
I.
,
Mignon
,
E.
, and
Preumont
,
A.
,
2002
, “
A Simple Architecture for in-pipe Inspection Robots
,”
Proc. Int. Colloq. Mobile
, Autonomous Systems,
Magdeburg, Germany
, pp.
61
64
.
9.
Venkateswaran
,
S.
,
Chablat
,
D.
, and
Boyer
,
F.
,
2019
, “
Numerical and Experimental Validation of the Prototype of a Bio-Inspired Piping Inspection Robot
,”
Robotics
,
8
(
2
), p.
32
.
10.
Henry
,
R.
,
Chablat
,
D.
,
Porez
,
M.
,
Boyer
,
F.
, and
Kanaan
,
D.
,
2014
, “
Multi-Objective Design Optimization of the Leg Mechanism for a Piping Inspection Robot
,”
Proceedings of the ASME 2014 IDETC-CIE, Vol. 5A: 38th Mechanisms and Robotics Conference
, ASME, p.
V05AT08A001
.
11.
Chablat
,
D.
,
Venkateswaran
,
S.
, and
Boyer
,
F.
,
2019
, “Dynamic Model of a Bio-Inspired Robot for Piping Inspection,”
ROMANSY 22–Robot Design, Dynamics and Control
,
V.
Arakelian
, and
P.
Wenger
, eds.,
Springer
, pp.
42
51
.
12.
Venkateswaran
,
S.
, and
Chablat
,
D.
,
2019
, “A New Inspection Robot for Pipelines with Bends and Junctions,”
Advances in Mechanism and Machine Science
,
T.
Uhl
, ed., IFToMM WC 2019, Mechanisms and Machine Science, vol.
73
,
Springer, Cham
.
13.
Guessasma
,
S.
, and
Bassir
,
H.
,
2009
, “
Comparing Heuristic and Deterministic Approaches to Optimise Mechanical Parameters of Biopolymer Composite Materials
,”
Mech. Adv. Mater. Struc.
,
16
(
4
), pp.
293
299
.
14.
Bennis
,
F.
, and
Bhattacharjya
,
R. K.
,
2020
,
Nature-Inspired Methods for Metaheuristics Optimization: Algorithms and Applications in Science and Engineering
, Vol.
16
,
Springer
,
Springer Nature Switzerland
.
15.
Rao
,
R. V.
, and
Waghmare
,
G.
,
2017
, “
A New Optimization Algorithm for Solving Complex Constrained Design Optimization Problems
,”
Eng. Optim.
,
49
(
1
), pp.
60
83
.
16.
Zhang
,
Y.
,
Gong
,
D.-W.
, and
Zhang
,
J.-H.
,
2013
, “
Robot Path Planning in Uncertain Environment Using Multi-Objective Particle Swarm Optimization
,”
Neurocomputing
,
103
, pp.
172
185
.
17.
Caro
,
S.
,
Chablat
,
D.
,
Ur-Rehman
,
R.
, and
Wenger
,
P.
,
2011
, “Multiobjective Design Optimization of 3–PRR Planar Parallel Manipulators,”
Global Product Development
,
A.
Bernard
, ed.,
Springer
, pp.
373
383
.
18.
Caro
,
S.
,
Dumas
,
C.
,
Garnier
,
S.
, and
Furet
,
B.
,
2013
, “
Workpiece Placement Optimization for Machining Operations With a Kuka Kr270-2 Robot
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
IEEE
, pp.
2921
2926
.
19.
Venkateswaran
,
S.
, and
Chablat
,
D.
,
2020
, “
Singularity and Workspace Analysis of 3-sps-u and 4-sps-u Tensegrity Mechanisms
,”,
International Symposium on Advances in Robot Kinematics
,
Ljubljana, Slovenia
,
Springer
, pp.
226
233
.
20.
Venkateswaran
,
S.
,
Furet
,
M.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2019
, “
Design and Analysis of a Tensegrity Mechanism for a Bio-Inspired Robot
,”
Proceedings of the ASME 2019 IDETC-CIE, Vol. 5A: 43rd Mechanisms and Robotics Conference
, ASME, p.
V05AT07A026
.
21.
Li
,
H.
,
Yang
,
H.
,
Zhan
,
M.
, and
Gu
,
R.
,
2007
, “
The Interactive Effects of Wrinkling and Other Defects in Thin-Walled Tube NC Bending Process
,”
J. Mater. Process. Technol.
,
187
, pp.
502
507
.
22.
Meirovitch
,
L.
,
2010
,
Fundamentals of Vibrations
,
Waveland Press
,
Long Grove, IL
.
23.
Dawkins
,
P.
,
2003
, “Paul’s Online Math Notes”. http://tutorial.math.lamar.edu.
24.
Yang
,
X.-S.
,
2011
, “
Metaheuristic Optimization
,”
Scholarpedia
,
6
(
8
), p.
11472
.
25.
Venkateswaran
,
S.
,
Chablat
,
D.
, and
Ramachandran
,
R.
,
2019
, “
Prototyping a Piping Inspection Robot Using a Beaglebone Black Board
,” 24éme Congrès Français de MécaniqueSEP, Brest, Association Français de Mécanique.
26.
Maxon Motors
, Program 2017/18. High precision Drives and Systems, http://epaper.maxonmotor.com/, Accessed December 15, 2019.
27.
Chosing the algorithm- MATLAB & Simulink- Mathworks France
, https://fr.mathworks.com/help/optim/ug/choosing-the-algorithm.html, Accessed February 2, 2020.
You do not currently have access to this content.