Abstract

In this paper, a simulated “soft” mechanical grasper (GXU-Grasper) with self-locking capability, self-adaptive object shape, single-degree of actuation, and full rigid structure is taken as the research object, and its self-adaptive grasping is analyzed. First, the degrees-of-freedom of the knuckle unit and the fingers of the grasper are calculated. Then, the kinematic model of finger self-adaptive grasping is established by the homogeneous coordinate matrix method. The joint motion space model of grasper under different component parameters is established. Based on this analysis, the corresponding grasping workspace formed by the grasper under different component motion parameters is given by numerical analysis in combination with the grasper finger kinematic model. Finally, the adaptive grasping experiment of the GXU-Grasper is carried out. The experiment shows that the fingers of the GXU-Grasper can effectively grasp various irregular objects in its workspace with relatively strong adaptability and large grasping range, which provides a reference for further analysis of the grasping reliability and engineering application of this grasper.

References

1.
Luo
,
M. Z.
,
Mei
,
T.
, and
Wang
,
X.
,
2005
, “
Design of a Shape Self-Adaptive Underactuated Robot Finger With Three Phalanges
,”
J. Comput. Aided Des. Comput. Graph.
,
17
(
02
), pp.
353
358
.
2.
Kragten
,
G. A.
, and
Herder
,
J. L.
,
2010
, “
A Platform for Grasp Performance Assessment in Compliant or Underactuated Hands
,”
ASME J. Mech. Des.
,
132
(
2
), p.
024502
.
3.
Inouye
,
J. M.
, and
Valero-Cuevas
,
F. J.
,
2013
, “
Computational Optimization and Experimental Evaluation of Grasp Quality for Tendon-Driven Hands Subject to Design Constraints
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021009
.
4.
Birglen
,
L.
, and
Schlicht
,
T.
,
2018
, “
A Statistical Review of Industrial Robotic Grippers
,”
Rob. Comput. Integr. Manuf.
,
49
, pp.
88
97
.
5.
Piazza
,
C.
,
Grioli
,
G.
,
Catalano
,
M. G.
, and
Bicchi
,
A.
,
2019
, “
A Century of Robotic Hands
,”
Annu. Rev. Control Rob. Auton. Syst.
,
2
(
1
), pp.
1
32
.
6.
Controzzi
,
M.
,
Cipriani
,
C.
, and
Carrozza
,
M. C.
,
2014
, “Design of Artificial Hands: A Review,”
The Human Hand as an Inspiration for Robot Hand Development
, Vol.
95
,
Springer
,
Cham
, pp.
219
246
.
7.
Chen
,
F. Y.
,
1982
, “
Gripping Mechanisms for Industrial Robots: An Overview
,”
Mech. Mach. Theory
,
17
(
5
), pp.
299
311
.
8.
Takuru
,
T.
, and
Samur
,
E.
,
2018
, “
A Robotic Gripper for Picking Up Two Objects Simultaneously
,”
Mech. Mach. Theory
,
121
, pp.
583
597
.
9.
Gosselin
,
C. M.
,
2006
, “
Adaptive Robotic Mechanical Systems: A Design Paradigm
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
192
198
.
10.
Laliberte
,
T.
,
Birglen
,
L.
, and
Gosselin
,
C.
,
2002
, “
Underactuation in Robotic Grasping Hands
,”
Mach. Intell. Rob. Control
,
4
(
3
), pp.
1
11
.
11.
Montambault
,
S.
, and
Gosselin
,
C. M.
,
2001
, “
Analysis of Underactuated Mechanical Grippers
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
367
374
.
12.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2006
, “
Geometric Design of Three-Phalanx Underactuated Fingers
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
356
364
.
13.
Jang
,
G.
,
Lee
,
C.
,
Lee
,
H.
, and
Choi
,
Y.
,
2013
, “
Robotic Index Finger Prosthesis Using Stackable Double 4-BAR Mechanisms
,”
Mechatronics
,
23
(
3
), pp.
318
325
.
14.
Yoon
,
D.
, and
Choi
,
Y.
,
2017
, “
Underactuated Finger Mechanism Using Contractible Slider-Cranks and Stackable Four-Bar Linkages
,”
IEEE-ASME Trans. Mechatron.
,
22
(
5
), pp.
2046
2057
.
15.
Liu
,
C. H.
,
Cheng
,
J. X.
,
Li
,
Z. L.
,
Cheng
,
C. X.
,
Zhang
,
C. L.
,
Zhang
,
Y. J.
, and
Zhong
,
R. Y.
,
2020
, “
Design of a Self-Adaptive Gripper With Rigid Fingers for Industrial Internet
,”
Rob. Comput. Integr. Manuf.
,
65
, p.
101976
.
16.
Hua
,
H.
,
Liao
,
Z.
, and
Chen
,
Y. J.
,
2020
, “
A 1-DOF Bidirectional Graspable Finger Mechanism for Robotic Gripper
,”
ASME J. Mech. Sci. Technol.
,
34
(
11
), pp.
4735
4741
.
17.
Wang
,
D.
,
Xiong
,
Y.
,
Zi
,
B.
,
Qian
,
S.
,
Wang
,
Z.
, and
Zhu
,
W.
,
2021
, “
Design, Analysis and Experiment of a Passively Adaptive Underactuated Robotic Hand With Linkage-Slider and Rack-Pinion Mechanisms
,”
Mech. Mach. Theory
,
155
, p.
104092
.
18.
Zhang
,
Z.
,
Zhang
,
Y.
,
Ning
,
M.
,
Zhou
,
Z. Y.
,
Wu
,
Z.
,
Zhao
,
J.
,
Li
,
X. H.
, and
Liu
,
W. H.
,
2022
, “
One-DOF Six-Bar Space Gripper With Multiple Operation Modes and Force Adaptability
,”
Aerosp. Sci. Technol.
,
123
, p.
107485
.
19.
Cheng
,
M.
,
Fan
,
S.
,
Yang
,
D.
, and
Jiang
,
L.
,
2020
, “
Design of an Underactuated Finger Based on a Novel Nine-Bar Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
065001
.
20.
Aukes
,
D. M.
,
Heyneman
,
B.
,
Ulmen
,
J.
,
Stuart
,
H.
,
Cutkosky
,
M. R.
,
Kim
,
S.
,
Garcia
,
P.
, and
Edsinger
,
A.
,
2014
, “
Design and Testing of a Selectively Compliant Underactuated Hand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
721
735
.
21.
Aukes
,
D. M.
,
Kim
,
S.
,
Garcia
,
P.
,
Edsinger
,
A.
, and
Cutkosky
,
M. R.
,
2012
, “
Selectively Compliant Underactuated Hand for Mobile Manipulation
,”
Proceedings of the 2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
2824
2829
.
22.
Peerdeman
,
B.
,
Pieterse
,
G. J.
,
Stramigioli
,
S.
,
Rietman
,
H.
,
Hekman
,
E.
,
Brouwer
,
D.
, and
Misra
,
S.
,
2012
, “
Design of Joint Locks for Underactuated Fingers
,”
Proceedings of the 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Rome, Italy
,
June 24–27
, pp.
488
493
.
23.
Peerdeman
,
B.
,
Valori
,
M.
,
Brouwer
,
D.
,
Hekman
,
E.
,
Misra
,
S.
, and
Stramigioli
,
S.
,
2014
, “
UT Hand I: A Lock-Based Underactuated Hand Prosthesis
,”
Mech. Mach. Theory
,
78
, pp.
307
323
.
24.
Stuart
,
H.
,
Wang
,
S. Q.
,
Khatib
,
O.
, and
Cutkosky
,
M. R.
,
2017
, “
The Ocean One Hands: An Adaptive Design for Robust Marine Manipulation
,”
Int. J. Rob. Res.
,
36
(
2
), pp.
150
166
.
25.
Lu
,
Q. J.
,
Baron
,
N.
,
Clark
,
A. B.
, and
Rojas
,
N.
,
2021
, “
Systematic Object-Invariant in-Hand Manipulation Via Reconfigurable Underactuation: Introducing the RUTH Gripper
,”
Int. J. Rob. Res.
,
40
(
12–14
), pp.
1402
1418
.
26.
Napier
,
J. R.
,
1956
, “
The Prehensile Movements of the Human Hand
,”
J. Bone Joint Surg. Br.
,
38
(
4
), pp.
902
913
.
27.
Cutkosky
,
M. R.
,
1989
, “
On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks
,”
IEEE Trans. Rob. Automat.
,
5
(
3
), pp.
269
279
.
28.
Vertongen
,
J.
,
Kamper
,
D. G.
,
Smit
,
G.
, and
Vallery
,
H.
,
2020
, “
Mechanical Aspects of Robot Hands, Active Hand Orthoses, and Prostheses: A Comparative Review
,”
IEEE-ASME Trans. Mechatron.
,
26
(
2
), pp.
955
965
.
29.
Hirose
,
S.
, and
Umetani
,
Y.
,
1978
, “
The Development of Soft Gripper for the Versatile Robot Hand
,”
Mech. Mach. Theory
,
13
(
3
), pp.
351
359
.
30.
Stavenuiter
,
R. A. J.
,
Birglen
,
L.
, and
Herder
,
J. L.
,
2017
, “
A Planar Underactuated Grasper With Adjustable Compliance
,”
Mech. Mach. Theory
,
112
, pp.
295
306
.
31.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2004
, “
Kinetostatic Analysis of Underactuated Fingers
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
211
221
.
32.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2003
, “
On the Force Capability of Underactuated Fingers
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Taipei, Taiwan
,
Sept. 14–19
, pp.
1139
1145
.
33.
Jin
,
J.
,
Zhang
,
W. Z.
,
Sun
,
Z. G.
, and
Chen
,
Q.
,
2012
, “
LISA Hand: Indirect Self-Adaptive Robotic Hand for Robust Grasping and Simplicity
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics
,
Guangzhou, China
,
Dec. 11–14
, pp.
2393
2398
.
34.
Zhang
,
W. Z.
,
Che
,
D. M.
,
Liu
,
H. B.
,
Ma
,
X. D.
,
Chen
,
Q.
,
Du
,
D.
, and
Sun
,
Z. G.
,
2009
, “
Super Under-Actuated Multifingered Mechanical Hand With Modular Self-Adaptive Gear-Rack Mechanism
,”
Ind. Rob.
,
4
(
3
), pp.
255
262
.
35.
Liu
,
S. Y.
,
Zhang
,
W. Z.
, and
Sun
,
J.
,
2019
, “
A Coupled and Indirectly Self-Adaptive Under-Actuated Hand With Double-Linkage-Slider Mechanism
,”
Ind. Rob.
,
46
(
5
), pp.
660
671
.
36.
Sun
,
J.
, and
Zhang
,
W. Z.
,
2012
, “
A Novel Coupled and Self-Adaptive Under-Actuated Multi-fingered Hand With Gear–Rack–Slider Mechanism
,”
J. Manuf. Syst.
,
31
(
1
), pp.
42
49
.
37.
Li
,
G.
,
Zhang
,
C.
,
Zhang
,
W.
,
Sun
,
Z.
, and
Chen
,
Q.
,
2014
, “
Coupled and Self-Adaptive Under-Actuated Finger With a Novel S-Coupled and Secondly Self-Adaptive Mechanism
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041010
.
38.
Xiong
,
C. H.
,
Chen
,
W. R.
,
Sun
,
B. Y.
,
Liu
,
M. J.
,
Yue
,
S. G.
, and
Chen
,
W. B.
,
2016
, “
Design and Implementation of an Anthropomorphic Hand for Replicating Human Grasping Functions
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
652
671
.
39.
Chen
,
W. R.
, and
Xiong
,
C. H.
,
2016
, “
On Adaptive Grasp With Underactuated Anthropomorphic Hands
,”
J. Bionic Eng.
,
13
(
1
), pp.
59
72
.
40.
Qiao
,
S. L.
,
Liu
,
R. Q.
,
Guo
,
H. W.
,
Liu
,
Y. X.
, and
Deng
,
Z. Q.
,
2018
, “
Configuration Design of an Under-Actuated Robotic Hand Based on Maximum Grasping Space
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
1
9
.
41.
Qiao
,
S. L.
,
Guo
,
H. W.
,
Liu
,
R. Q.
,
Huang
,
Y.
, and
Deng
,
Z. Q.
,
2019
, “
Self-Adaptive Grasp Analysis of a Novel Under-Actuated Cable-Truss Robotic Finger
,”
Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci.
,
233
(
6
), pp.
2121
2134
.
42.
Qiao
,
S. L.
,
Guo
,
H. W.
, and
Liu
,
R. Q.
,
2019
, “
Self-Adaptive Grasp Process and Equilibrium Configuration Analysis of a 3-DOF UACT Robotic Finger
,”
Mech. Mach. Theory
,
133
, pp.
250
266
.
43.
Wang
,
R. G.
,
Huang
,
H. B.
,
Xu
,
R. H.
,
Li
,
K. G.
, and
Dai
,
J. S.
,
2021
, “
Design of a Novel Simulated “Soft” Mechanical Grasper
,”
Mech. Mach. Theory
,
158
, p.
104240
.
You do not currently have access to this content.