Graphical Abstract Figure

Examples of present safety mechanisms in exoskeleton technology

Graphical Abstract Figure

Examples of present safety mechanisms in exoskeleton technology

Close modal

Abstract

Exoskeletons, wearable robotic devices designed to enhance human strength and endurance, find applications in various fields such as healthcare and industry; however, stringent safety measures should be adopted in such settings. This paper presents a comprehensive exploration of challenges associated with exoskeleton technology, ranging from mechanical issues to regulatory and ethical considerations. The enumerated challenges include joint hyper-extension or flexion, rapid or sudden motion, misalignment, fit, and comfort issues, mechanical failure, weight and mobility limitations, environmental challenges, power supply issues, high energy consumption and regeneration, fall risk or stability concerns, sensor failures, control algorithm malfunctions, machine-learning model challenges, communication disconnection, actuator malfunctions, unexpected human–robot interactions, and regulatory and ethical considerations. The paper outlines possible risks and suggests practical solutions based on design, control, and testing methods for each challenge. The objective is to offer a guideline for developers and users, emphasizing safety, reliability, and optimal performance in the ever-evolving landscape of exoskeleton technology. The guideline covers preoperation checks, user training, emergency response, real-time monitoring, and user interaction to ensure responsible innovation and user-centricity in exoskeleton development and deployment.

References

1.
Zoss
,
A.
, and
Kazerooni
,
H.
,
2006
, “
Design of an Electrically Actuated Lower Extremity Exoskeleton
,”
Adv. Rob.
,
20
(
9
), pp.
967
988
.
2.
Yang
,
C. J.
,
Zhang
,
J. F.
,
Chen
,
Y.
,
Dong
,
Y. M.
, and
Zhang
,
Y.
,
2008
, “
A Review of Exoskeleton-Type Systems and Their Key Technologies
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
222
(
8
), pp.
1599
1612
.
3.
Naidu
,
D.
,
Stopforth
,
R.
,
Bright
,
G.
, and
Davrajh
,
S.
,
2012
, “
A Portable Passive Physiotherapeutic Exoskeleton
,”
Int. J. Adv. Rob. Syst.
,
9
(
4
), p.
137
.
4.
Ghannadi
,
B.
,
Razavian
,
R. S.
, and
McPhee
,
J.
,
2018
, “Upper Extremity Rehabilitation Robots: A Survey,”
Handbook of Biomechatronics
,
Elsevier
,
San Diego, CA
, pp.
319
353
.
5.
Schorsch
,
J. F.
,
Keemink
,
A. Q.
,
Stienen
,
A. H.
,
Van Der Helm
,
F. C.
, and
Abbink
,
D. A.
,
2014
, “
A Novel Self-aligning Mechanism to Decouple Force and Torques for a Planar Exoskeleton Joint
,”
Mech. Sci.
,
5
(
2
), pp.
29
35
.
6.
de Looze
,
M. P.
,
Bosch
,
T.
,
Krause
,
F.
,
Stadler
,
K. S.
, and
O’Sullivan
,
L. W.
,
2016
, “
Exoskeletons for Industrial Application and Their Potential Effects on Physical Work Load
,”
Ergonomics
,
59
(
5
), pp.
671
681
.
7.
Veale
,
A. J.
, and
Xie
,
S. Q.
,
2016
, “
Towards Compliant and Wearable Robotic Orthoses: A Review of Current and Emerging Actuator Technologies
,”
Med. Eng. Phys.
,
38
(
4
), pp.
317
325
.
8.
Liu
,
Z.
,
Yin
,
W.
,
Han
,
J.
, and
Zhang
,
J.
,
2022
, “
Design and Evaluation of a Self-aligning Knee Exoskeleton for Knee Extension Assistance During Walking
,”
37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)
,
Beijing, China
, pp.
1572
1577
.
9.
Porter
,
A. P.
,
Marchesini
,
B.
,
Potryasilova
,
I.
,
Rossetto
,
E.
, and
Newman
,
D. J.
,
2020
, “
Soft Exoskeleton Knee Prototype for Advanced Space Suits and Planetary Exploration
,”
IEEE Aerospace Conference
,
Big Sky, MT
,
Aug. 21
.
10.
Mubin
,
O.
,
Alnajjar
,
F.
,
Jishtu
,
N.
,
Alsinglawi
,
B.
, and
Al Mahmud
,
A.
,
2019
, “
Exoskeletons With Virtual Reality, Augmented Reality, and Gamification for Stroke Patients’ Rehabilitation: Systematic Review
,”
JMIR Rehabil. Assist. Technol.
,
6
(
2
), p.
e12010
.
11.
Proud
,
J. K.
,
Lai
,
D. T.
,
Mudie
,
K. L.
,
Carstairs
,
G. L.
,
Billing
,
D. C.
,
Garofolini
,
A.
, and
Begg
,
R. K.
,
2022
, “
Exoskeleton Application to Military Manual Handling Tasks
,”
Human Factors
,
64
(
3
), pp.
527
554
.
12.
Massardi
,
S.
,
Rodriguez-Cianca
,
D.
,
Pinto-Fernandez
,
D.
,
Moreno
,
J. C.
,
Lancini
,
M.
, and
Torricelli
,
D.
,
2022
, “
Characterization and Evaluation of Human-Exoskeleton Interaction Dynamics: A Review
,”
Sensors
,
22
(
11
), p.
3993
.
13.
Wang
,
D.
,
Gu
,
X.
,
Li
,
W.
,
Jin
,
Y.
,
Yang
,
M.
, and
Yu
,
H.
,
2023
, “
Evaluation of Safety-Related Performance of Wearable Lower Limb Exoskeleton Robot (WLLER): A Systematic Review
,”
Rob. Auton. Syst.
,
160
, p.
104308
.
14.
Nazari
,
F.
,
Chaibakhsh
,
A.
,
Najafi
,
F.
, and
Alipour
,
K.
,
2022
, “
Design and Development of a Mechanical Safety Stop Mechanism and an Adaptive Variable Impedance Controller for a Softhand Exoskeleton
,”
Int. J. Rob. Theory Appl.
,
8
(
1
), pp.
17
32
.
15.
O’Sullivan
,
L.
,
Nugent
,
R.
, and
van der Vorm
,
J.
,
2015
, “
Standards for the Safety of Exoskeletons Used by Industrial Workers Performing Manual Handling Activities: A Contribution From the Robo-mate Project to Their Future Development
,”
Procedia Manuf.
,
3
, pp.
1418
1425
.
16.
Fosch-Villaronga
,
E.
, and
Drukarch
,
H.
,
2023
, “
Accounting for Diversity in Robot Design, Testbeds, and Safety Standardization
,”
Int. J. Soc. Rob.
,
15
(
11
), pp.
1871
1889
.
17.
Bessler
,
J.
,
Prange-Lasonder
,
G. B.
,
Schaake
,
L.
,
Saenz
,
J. F.
,
Bidard
,
C.
,
Fassi
,
I.
,
Valori
,
M.
,
Lassen
,
A. B.
, and
Buurke
,
J. H.
,
2021
, “
Safety Assessment of Rehabilitation Robots: A Review Identifying Safety Skills and Current Knowledge Gaps
,”
Front. Rob. AI
,
8
, p.
602878
.
18.
Elprama
,
S. A.
,
Vanderborght
,
B.
, and
Jacobs
,
A.
,
2022
, “
An Industrial Exoskeleton User Acceptance Framework Based on a Literature Review of Empirical Studies
,”
Appl. Ergon.
,
100
, p.
103615
.
19.
Plaza
,
A.
,
Hernandez
,
M.
,
Puyuelo
,
G.
,
Garces
,
E.
, and
Garcia
,
E.
,
2023
, “
Lower-Limb Medical and Rehabilitation Exoskeletons: A Review of the Current Designs
,”
IEEE Rev. Biomed. Eng.
,
16
, pp.
278
291
.
20.
Hussain
,
F.
,
Goecke
,
R.
, and
Mohammadian
,
M.
,
2021
, “
Exoskeleton Robots for Lower Limb Assistance: A Review of Materials, Actuation, and Manufacturing Methods
,”
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
,
235
(
12
), pp.
1375
1385
.
21.
Laschowski
,
B. B.
,
McPhee
,
J.
, and
Andrysek
,
J.
,
2019
, “
Lower-Limb Prostheses and Exoskeletons With Energy Regeneration: Mechatronic Design and Optimization Review
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
040801
.
22.
Hamza
,
M. F.
,
Ghazilla
,
R. A. R.
,
Muhammad
,
B. B.
, and
Yap
,
H. J.
,
2020
, “
Balance and Stability Issues in Lower Extremity Exoskeletons: A Systematic Review
,”
Biocybern. Biomed. Eng.
,
40
(
4
), pp.
1666
1679
.
23.
Lajeunesse
,
V.
,
Vincent
,
C.
,
Routhier
,
F.
,
Careau
,
E.
, and
Michaud
,
F.
,
2016
, “
Exoskeletons’ Design and Usefulness Evidence According to a Systematic Review of Lower Limb Exoskeletons Used for Functional Mobility by People With Spinal Cord Injury
,”
Disabil. Rehabil.: Assist. Technol.
,
11
(
7
), pp.
535
547
.
24.
Medeiros
,
H. B. d. O.
,
Araújo
,
D. S. M. S. d.
, and
Araújo
,
C. G. S. d.
,
2013
, “
Age-Related Mobility Loss Is Joint-Apecific: An Analysis From 6,000 Flexitest Results
,”
AGE
,
35
(
6
), pp.
2399
2407
.
25.
Haraguchi
,
N.
,
Nasr
,
A.
,
Inkol
,
K. A.
,
Hase
,
K.
, and
McPhee
,
J.
,
2023
, “
Human and Passive Lower-Limb Exoskeleton Interaction Analysis: Computational Study With Dynamics Simulation Using Nonlinear Model Predictive Control
,”
62nd Annual Conference of the Society of Instrument and Control Engineers (SICE)
,
Tsu, Japan
,
Dec. 19
, IEEE, pp.
844
849
.
26.
Nasr
,
A.
,
Hashemi
,
A.
, and
McPhee
,
J.
,
2023
, “
Scalable Musculoskeletal Model for Dynamic Simulations of Upper Body Movement
,”
Comput. Methods Biomech. Biomed. Eng.
,
27
(
3
), pp.
1
32
.
27.
Nasr
,
A.
, and
McPhee
,
J.
,
2024
, “
Scalable Musculoskeletal Model for Dynamic Simulations of Lower Body Movement
,”
Comput. Methods Biomech. Biomed. Eng.
,
27
(
3
), pp.
1
27
.
28.
Wang
,
W. D.
,
Zhang
,
J. B.
,
Kong
,
D.
,
Su
,
S.
,
Yuan
,
X. Q.
, and
Zhao
,
C.
,
2022
, “
Research on Control Method of Upper Limb Exoskeleton Based on Mixed Perception Model
,”
Robotica
,
40
(
10
), pp.
3669
3685
.
29.
Celik
,
O.
, and
O’Malley
,
M. K.
,
2014
, “
Vary Slow Motion: Effect of Task Forces on Movement Variability and Implications for a Novel Skill Augmentation Mechanism
,”
IEEE Rob. Autom. Mag.
,
21
(
3
), pp.
115
122
.
30.
Sposito
,
M.
,
Poliero
,
T.
,
Di Natali
,
C. D.
,
Toxiri
,
S.
,
Anastasi
,
S.
,
Draicchio
,
F.
,
Monica
,
L.
,
Caldwell
,
D.
,
De Momi
,
E. D.
, and
Ortiz
,
J.
,
2021
, “
Physical Comfort of Occupational Exoskeletons: Influence of Static Fit on Subjective Scores
,”
14th PErvasive Technologies Related to Assistive Environments Conference
,
Corfu, Greece
, pp.
60
68
.
31.
Wang
,
J.
,
Li
,
X.
,
Huang
,
T. H.
,
Yu
,
S.
,
Li
,
Y.
,
Chen
,
T.
,
Carriero
,
A.
,
Oh-Park
,
M.
, and
Su
,
H.
,
2018
, “
Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
4265
4272
.
32.
Bartenbach
,
V.
,
Wyss
,
D.
,
Seuret
,
D.
, and
Riener
,
R.
,
2015
, “
A Lower Limb Exoskeleton Research Platform to Investigate Human–Robot Interaction
,”
IEEE International Conference on Rehabilitation Robotics (ICORR)
,
Singapore
, pp.
600
605
.
33.
Poggensee
,
K. L.
, and
Collins
,
S. H.
,
2021
, “
How Adaptation, Training, and Customization Contribute to Benefits From Exoskeleton Assistance
,”
Sci. Rob.
,
6
(
58
), p.
eabf1078
.
34.
Wang
,
Y.
,
Qiu
,
J.
,
Cheng
,
H.
, and
Zheng
,
X.
,
2023
, “
Analysis of Human-Exoskeleton System Interaction for Ergonomic Design
,”
Human Factors
,
65
(
5
), pp.
909
922
.
35.
Nasr
,
A.
,
Bell
,
S.
, and
McPhee
,
J.
,
2023
, “
Optimal Design of Active–Passive Shoulder Exoskeletons: A Computational Modeling of Human–Robot Interaction
,”
Multibody Syst. Dyn.
,
57
, pp.
73
106
.
36.
Sarkisian
,
S. V.
,
Ishmael
,
M. K.
, and
Lenzi
,
T.
,
2021
, “
Self-aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
29
, pp.
629
640
.
37.
Schiele
,
A.
,
2009
, “
Ergonomics of Exoskeletons: Objective Performance Metrics
,”
World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Salt Lake City, UT
,
Mar. 18–20
, pp.
103
108
.
38.
Chien
,
W.-C.
, and
Tsai
,
T.-F.
,
2024
, “
Pressure and Skin: A Review of Disease Entities Driven or Influenced by Mechanical Pressure
,”
Am. J. Clin. Dermatol.
,
25
(
2
), pp.
261
280
.
39.
Xing
,
L.
,
Wang
,
M.
,
Zhang
,
J.
,
Chen
,
X.
, and
Ye
,
X.
,
2020
, “
A Survey on Flexible Exoskeleton Robot
,”
4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)
,
Chongqing, China
, pp.
170
174
.
40.
Awad
,
L. N.
,
Esquenazi
,
A.
,
Francisco
,
G. E.
,
Nolan
,
K. J.
, and
Jayaraman
,
A.
,
2020
, “
The ReWalk ReStoreTM Soft Robotic Exosuit: A Multi-Site Clinical Trial of the Safety, Reliability, and Feasibility of Exosuit-Augmented Post-stroke Gait Rehabilitation
,”
J. Neuroeng. Rehabil.
,
17
(
1
), p.
80
.
41.
Lee
,
G.
,
Kim
,
J.
,
Panizzolo
,
F. A.
,
Zhou
,
Y. M.
,
Baker
,
L. M.
,
Galiana
,
I.
,
Malcolm
,
P.
, and
Walsh
,
C. J.
,
2017
, “
Reducing the Metabolic Cost of Running With a Tethered Soft Exosuit
,”
Sci. Rob.
,
2
(
6
), p.
eaan6708
.
42.
Jin
,
X.
,
Cai
,
Y.
,
Prado
,
A.
, and
Agrawal
,
S. K.
,
2017
, “
Effects of Exoskeleton Weight and Inertia on Human Walking
,”
International Conference on Robotics and Automation (ICRA)
,
Singapore
, pp.
1772
1777
.
43.
Mikolajczyk
,
T.
,
Mikolajewski
,
D.
,
Klodowski
,
A.
,
Lukaszewicz
,
A.
,
Mikolajewska
,
E.
,
Paczkowski
,
T.
,
Macko
,
M.
, and
Skornia
,
M.
,
2023
, “
Energy Sources of Mobile Robot Power Systems: A Systematic Review and Comparison of Efficiency
,”
Appl. Sci. (Switzerland)
,
13
(
13
), p.
7547
.
44.
Liu
,
Y. X.
,
Zhang
,
L.
,
Wang
,
R.
,
Smith
,
C.
, and
Gutierrez-Farewik
,
E. M.
,
2021
, “
Weight Distribution of a Knee Exoskeleton Influences Muscle Activities During Movements
,”
IEEE Access
,
9
, pp.
91614
91624
.
45.
Chittar
,
O. A.
, and
Barve
,
S. B.
,
2022
, “
Waist-Supportive Exoskeleton : Systems and Materials
,”
Mater. Today: Proc.
,
57
, pp.
840
845
.
46.
Batkuldinova
,
K.
,
Abilgaziyev
,
A.
,
Shehab
,
E.
, and
Hazrat Ali
,
M.
,
2021
, “
The Recent Development of 3D Printing in Developing Lower-Leg Exoskeleton: A Review
,”
Mater. Today: Proc.
,
42
, pp.
1822
1828
.
47.
Laschowski
,
B.
,
Razavian
,
R. S.
, and
McPhee
,
J.
,
2021
, “
Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration
,”
IEEE Trans. Med. Rob. Bionics
,
3
(
2
), pp.
455
462
.
48.
Emmens
,
A.
,
Van Asseldonk
,
E.
,
Masciullo
,
M.
,
Arquilla
,
M.
,
Pisotta
,
I.
,
Tagliamonte
,
N. L.
,
Tamburella
,
F.
,
Molinari
,
M.
, and
Van Der Kooij
,
H.
,
2018
, “
Improving the Standing Balance of Paraplegics Through the Use of a Wearable Exoskeleton
,”
7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
,
Enschede, Netherlands
,
Oct. 11
, IEEE, pp.
707
712
.
49.
Achilli
,
G. M.
,
Amici
,
C.
,
Dragusanu
,
M.
,
Gobbo
,
M.
,
Logozzo
,
S.
,
Malvezzi
,
M.
,
Tiboni
,
M.
, and
Valigi
,
M. C.
,
2023
, “
Soft, Rigid, and Hybrid Robotic Exoskeletons for Hand Rehabilitation: Roadmap With Impairment-Oriented Rationale for Devices Design and Selection
,”
Appl. Sci. (Switzerland)
,
13
(
20
), p.
11287
.
50.
Hsieh
,
H. C.
,
Chen
,
D. F.
,
Chien
,
L.
, and
Lan
,
C. C.
,
2017
, “
Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2034
2045
.
51.
Xu
,
J.
,
Niu
,
Y.
, and
Liu
,
F.
,
2025
, “
Development and Analysis of a Novel Bio-syncretic Parallel Hip Exoskeleton Based on Torque Requirements
,”
ASME J. Mech. Rob.
,
17
(
3
), p.
031001
.
52.
Shi
,
D.
,
Zhang
,
W.
,
Wang
,
L.
,
Zhang
,
W.
,
Feng
,
Y.
, and
Ding
,
X.
,
2022
, “
Joint-Angle Adaptive Coordination Control of a Serial–Parallel Lower Limb Rehabilitation Exoskeleton
,”
IEEE Trans. Med. Rob. Bionics
,
4
(
3
), pp.
775
784
.
53.
Zhu
,
H.
,
Nesler
,
C.
,
Divekar
,
N.
,
Ahmad
,
M. T.
, and
Gregg
,
R. D.
,
2019
, “
Design and Validation of a Partial-Assist Knee Orthosis With Compact, Backdrivable Actuation
,”
IEEE 16th International Conference on Rehabilitation Robotics (ICORR)
,
Toronto, ON, Canada
,
June 24–28
, IEEE, pp.
917
924
.
54.
Kosaki
,
T.
, and
Li
,
S.
,
2020
, “
A Water-Hydraulic Upper-Limb Assistive Exoskeleton System With Displacement Estimation
,”
J. Rob. Mechatron.
,
32
(
1
), pp.
149
156
.
55.
Verstraten
,
T.
,
Hosen
,
M. S.
,
Berecibar
,
M.
, and
Vanderborght
,
B.
,
2023
, “
Selecting Suitable Battery Technologies for Untethered Robot
,”
Energies
,
16
(
13
), p.
4904
.
56.
Ehrenfeld
,
J. M.
,
Hariharan
,
S.
, and
Corn
,
S. B.
,
2011
, “Electrical Safety,”
Essential Clinical Anesthesia
,
Cambridge University Press
,
Cambridge, UK
, pp.
149
154
.
57.
Garche
,
J.
, and
Brandt
,
K.
,
2018
, “General Battery Safety Considerations,”
Electrochemical Power Sources: Fundamentals, Systems, and Applications Li-Battery Safety
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
1
19
.
58.
Feng
,
Y.
,
Mai
,
J.
,
Agrawal
,
S. K.
, and
Wang
,
Q.
,
2020
, “
Energy Regeneration From Electromagnetic Induction by Human Dynamics for Lower Extremity Robotic Prostheses
,”
IEEE Trans. Rob.
,
36
(
5
), pp.
1442
1451
.
59.
Gurriet
,
T.
,
Finet
,
S.
,
Boeris
,
G.
,
Duburcq
,
A.
,
Hereid
,
A.
,
Harib
,
O.
,
Masselin
,
M.
,
Grizzle
,
J.
, and
Ames
,
A. D.
,
2018
, “
Towards Restoring Locomotion for Paraplegics: Realizing Dynamically Stable Walking on Exoskeletons
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
May 21–25
, pp.
2804
2811
.
60.
Mileti
,
I.
,
Taborri
,
J.
,
Rodriguez-Cianca
,
D.
,
Torricelli
,
D.
,
Rossi
,
S.
, and
Patanè
,
F.
,
2022
, “
Feasibility and Application of the B.E.A.T. Testbed for Assessing the Effects of Lower Limb Exoskeletons on Human Balance
,”
Robotics
,
11
(
6
), p.
151
.
61.
Inkol
,
K. A.
, and
McPhee
,
J.
,
2022
, “
Using Dynamic Simulations to Estimate the Feasible Stability Region of Feet-in-Place Balance Recovery for Lower-Limb Exoskeleton Users
,”
9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob)
,
Seoul, South Korea
,
Aug. 21–24
, pp.
1
6
.
62.
Farkhatdinov
,
I.
,
Ebert
,
J.
,
van Oort
,
G.
,
Vlutters
,
M.
,
van Asseldonk
,
E.
, and
Burdet
,
E.
,
2019
, “
Assisting Human Balance in Standing With a Robotic Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
414
421
.
63.
Beck
,
O. N.
,
Shepherd
,
M. K.
,
Rastogi
,
R.
,
Martino
,
G.
,
Ting
,
L. H.
, and
Sawicki
,
G. S.
,
2023
, “
Exoskeletons Need to React Faster Than Physiological Responses to Improve Standing Balance
,”
Sci. Rob.
,
8
(
75
), p.
eadf1080
.
64.
Afschrift
,
M.
,
van Asseldonk
,
E.
,
van Mierlo
,
M.
,
Bayon
,
C.
,
Keemink
,
A.
,
D’Hondt
,
L.
,
van der Kooij
,
H.
, and
De Groote
,
F.
,
2023
, “
Assisting Walking Balance Using a Bio-inspired Exoskeleton Controller
,”
J. Neuroeng. Rehabil.
,
20
(
1
), p.
82
.
65.
Campbell
,
S. M.
,
DIduch
,
C. P.
, and
Sensinger
,
J. W.
,
2020
, “
Autonomous Assistance-as-Needed Control of a Lower Limb Exoskeleton With Guaranteed Stability
,”
IEEE Access
,
8
, pp.
51168
51178
.
66.
Bayón
,
C.
,
Keemink
,
A. Q.
,
van Mierlo
,
M.
,
Rampeltshammer
,
W.
,
van der Kooij
,
H.
, and
van Asseldonk
,
E. H.
,
2022
, “
Cooperative Ankle-Exoskeleton Control Can Reduce Effort to Recover Balance After Unexpected Disturbances During Walking
,”
J. Neuroeng. Rehabil.
,
19
(
1
), p.
21
.
67.
Rajasekaran
,
V.
,
Aranda
,
J.
,
Casals
,
A.
, and
Pons
,
J. L.
,
2015
, “
An Adaptive Control Strategy for Postural Stability Using a Wearable Robot
,”
Rob. Auton. Syst.
,
73
, pp.
16
23
.
68.
Sharafi
,
S.
, and
Uchida
,
T. K.
,
2023
, “
Stability of Human Balance During Quiet Stance With Physiological and Exoskeleton Time Delays
,”
IEEE Rob. Autom. Lett.
,
8
(
10
), pp.
6211
6218
.
69.
Laschowski
,
B.
,
McNally
,
W.
,
Wong
,
A.
, and
McPhee
,
J.
,
2022
, “
Environment Classification for Robotic Leg Prostheses and Exoskeletons Using Deep Convolutional Neural Networks
,”
Front. Neurorobotics
,
15
, p.
730965
.
70.
Hof
,
A. L.
,
Gazendam
,
M. G.
, and
Sinke
,
W. E.
,
2005
, “
The Condition for Dynamic Stability
,”
J. Biomech.
,
38
(
1
), pp.
1
8
.
71.
Javaid
,
M.
,
Haleem
,
A.
,
Rab
,
S.
,
Pratap Singh
,
R.
, and
Suman
,
R.
,
2021
, “
Sensors for Daily Life: A Review
,”
Sensors Int.
,
2
, p.
100121
.
72.
Lajimi
,
S. A. M.
, and
McPhee
,
J.
,
2017
, “
A Comprehensive Filter to Reduce Drift From Euler Angles, Velocity, and Position Using an IMU
,”
IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)
,
Windsor, ON, Canada
,
June 15
.
73.
Nasr
,
A.
,
Bell
,
S.
,
Whittaker
,
R. L.
,
Dickerson
,
C. R.
, and
McPhee
,
J.
,
2023
, “
Robust Machine Learning Mapping of SEMG Signals to Future Actuator Commands in Biomechatronic Devices
,”
J. Bionic Eng.
,
21
(
1
), pp.
1
18
.
74.
Nasr
,
A.
,
2022
, “Design, Dynamics, and Control of Active–Passive Upper-Limb Exoskeleton Robots,” PhD thesis,
University of Waterloo
,
Waterloo, ON
.
75.
Shourijeh
,
M. S.
,
Razavian
,
R. S.
, and
McPhee
,
J.
,
2017
, “
Estimation of Maximum Finger Tapping Frequency Using Musculoskeletal Dynamic Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051009
.
76.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
, 4th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
77.
Simon
,
D.
,
2010
, “
Kalman Filtering With State Constraints: A Survey of Linear and Nonlinear Algorithms
,”
IET Control Theory Appl.
,
4
(
8
), pp.
1303
1318
.
78.
Novak
,
D.
, and
Riener
,
R.
,
2015
, “
A Survey of Sensor Fusion Methods in Wearable Robotics
,”
Rob. Auton. Syst.
,
73
, pp.
155
170
.
79.
Kuo
,
A. D.
,
2005
, “
An Optimal State Estimation Model of Sensory Integration in Human Postural Balance
,”
J. Neural Eng.
,
2
(
3
), p.
S235
.
80.
Mehrabi
,
N.
,
Razavian
,
R. S.
,
Ghannadi
,
B.
, and
McPhee
,
J.
,
2017
, “
Predictive Simulation of Reaching Moving Targets Using Nonlinear Model Predictive Control
,”
Front. Comput. Neurosci.
,
10
, p.
143
.
81.
Nasr
,
A.
,
Hashemi
,
A.
, and
McPhee
,
J.
,
2022
, “
Model-Based Mid-Level Regulation for Assist-as-Needed Hierarchical Control of Wearable Robots: A Computational Study of Human–Robot Adaptation
,”
Robotics
,
11
(
1
), p.
20
.
82.
Febrer-Nafría
,
M.
,
Nasr
,
A.
,
Ezati
,
M.
,
Brown
,
P.
,
Font-Llagunes
,
J. M.
, and
McPhee
,
J.
,
2022
, “
Predictive Multibody Dynamic Simulation of Human Neuromusculoskeletal Systems: A Review
,”
Multibody Syst. Dyn.
,
58
(
3
), pp.
1
41
.
83.
Bostelman
,
R.
, and
Hong
,
T.
,
2018
, “
Test Methods for Exoskeletons—Lessons Learned from Industrial and Response Robotics
,”
Wearable Exoskeleton Systems: Design, Control and Applications
, pp.
335
362
.
84.
Nasr
,
A.
,
Bell
,
S.
,
He
,
J.
,
Whittaker
,
R. L.
,
Jiang
,
N.
,
Dickerson
,
C. R.
, and
McPhee
,
J.
,
2021
, “
MuscleNET: Mapping Electromyography to Kinematic and Dynamic Biomechanical Variables
,”
J. Neural Eng.
,
18
(
4
), p.
0460d3
.
85.
Rahman
,
Q. M.
,
Corke
,
P.
, and
Dayoub
,
F.
,
2021
, “
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey of Emerging Trends
,”
IEEE Access
,
9
, pp.
20067
20075
.
86.
Nasr
,
A.
,
Inkol
,
K. A.
,
Bell
,
S.
, and
McPhee
,
J.
,
2021
, “
InverseMuscleNET: Alternative Machine Learning Solution to Static Optimization and Inverse Muscle Modelling
,”
Front. Comput. Neurosci.
,
15
, p.
759489
.
87.
Gharib
,
M.
,
Zoppi
,
T.
, and
Bondavalli
,
A.
,
2022
, “
On the Properness of Incorporating Binary Classification Machine Learning Algorithms Into Safety-Critical Systems
,”
IEEE Trans. Emerg. Top. Comput.
,
10
(
4
), pp.
1671
1686
.
88.
Zolfagharian
,
A.
,
Abdellatif
,
M.
,
Briand
,
L. C.
,
Bagherzadeh
,
M.
, and
Ramesh
,
S.
,
2023
, “
A Search-Based Testing Approach for Deep Reinforcement Learning Agents
,”
IEEE Trans. Softw. Eng.
,
49
(
7
), pp.
3715
3735
.
89.
Aghababaeyan
,
Z.
,
Abdellatif
,
M.
,
Briand
,
L.
,
Ramesh
,
S.
, and
Bagherzadeh
,
M.
,
2023
, “
Black-Box Testing of Deep Neural Networks Through Test Case Diversity
,”
IEEE Trans. Softw. Eng.
,
49
(
5
), pp.
3182
3204
.
90.
Nasr
,
A.
,
Hunter
,
J.
,
Dickerson
,
C. R.
, and
McPhee
,
J.
,
2023
, “
Evaluation of a Machine Learning-Driven Active–Passive Upper Limb Exoskeleton Robot: Experimental Human-in-the-Loop Study
,”
Wearable Technol.
,
4
, p.
e13
.
91.
Zhou
,
X.
,
2020
, “
Predictive Human-in-the-Loop Simulations for Assistive Exoskeletons
,” Proceedings of the ASME Design Engineering Technical Conference.
92.
Hawkins
,
R.
,
Paterson
,
C.
,
Picardi
,
C.
,
Jia
,
Y.
,
Calinescu
,
R.
, and
Habli
,
I.
,
2021
, “Guidance on the Assurance of Machine Learning in Autonomous Systems (AMLAS),” arXiv preprint, http://arxiv.org/abs/2102.01564,
93.
Nasr
,
A.
,
Ferguson
,
S.
, and
McPhee
,
J.
,
2022
, “
Model-Based Design and Optimization of Passive Shoulder Exoskeletons
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
5
), p.
051004
.
94.
Millard
,
M.
,
Emonds
,
A. L.
,
Harant
,
M.
, and
Mombaur
,
K. D.
,
2019
, “
A Reduced Muscle Model and Planar Musculoskeletal Model Fit for the Simulation of Whole-Body Movements
,”
J. Biomech.
,
89
, pp.
11
20
.
95.
Bell
,
S.
,
Nasr
,
A.
, and
McPhee
,
J.
,
2024
, “
General Muscle Torque Generator Model for a Two Degree-of-Freedom Shoulder Joint
,”
ASME J. Biomech. Eng.
,
146
(
8
), p.
081008
.
96.
Reyes
,
R. D.
,
Kobetic
,
R.
,
Nandor
,
M.
,
Makowski
,
N.
,
Audu
,
M.
,
Quinn
,
R.
, and
Triolo
,
R.
,
2020
, “
Effect of Joint Friction Compensation on a “Muscle-First’ Motor-Assisted Hybrid Neuroprosthesis
,”
Front. Neurorobot.
,
14
, p.
588950
.
97.
Tanel
,
M. R.
,
Weaver
,
T. B.
, and
Laing
,
A. C.
,
2018
, “
Standing Versus Stepping—Exploring the Relationships Between Postural Steadiness and Dynamic Reactive Balance Control
,”
J. Appl. Biomech.
,
34
(
6
), pp.
488
495
.
98.
Meyer
,
J. T.
,
Schrade
,
S. O.
,
Lambercy
,
O.
, and
Gassert
,
R.
,
2019
, “
User-Centered Design and Evaluation of Physical Interfaces for an Exoskeleton for Paraplegic Users
,”
IEEE 16th International Conference on Rehabilitation Robotics (ICORR)
,
Toronto, ON, Canada
,
June 24–28
, pp.
1159
1166
.
99.
Groos
,
S.
,
Fuchs
,
M.
, and
Kluth
,
K.
,
2020
, “
Determination of the Subjective Strain Experiences During Assembly Activities Using the Exoskeleton ‘Chairless Chair’
,”
International Conference on Human Factors in Robots and Unmanned Systems
,
Washington, DC
,
July 24–28
, pp.
72
82
.
You do not currently have access to this content.