Abstract

Establishing a microelastic deformation (micro-deformation) model of parallel manipulators (PMs) in the gravity field is of great significance for improving the calibration accuracy. Gravity affects the limb constraint wrenches space of PMs, resulting in the end-point micro-deformation, which damages end-point accuracy. A modeling method was proposed for the micro-deformation analysis of PMs with the consideration of gravity and the flexibility of rods and actuators based on the screw theory to fix this issue. First, the mechanism was considered an open-loop structure by cutting joints at the connection between limbs and moving platform. The limb constraint wrenches system and limb stiffness matrix were determined based on the screw theory and strain energy methods. Then, the limb gravity-additional constraint wrenches induced by gravity were established based on the reciprocity product of the twist screw and the constraint wrenches being zero. Meanwhile, the projection of limb deformations caused by gravity in the direction of the constraint wrenches system was established. Finally, an analytical methodology of the end-point micro-deformation of PMs with the consideration of gravity was built by means of the virtual work principle. The work decoupled the influences of gravity and the external load on the micro-deformation of the mechanism. The comparison between the results of the analytical model and finite element model of the line body and solid body of the 3PRRR over-constrained PM showed that the maximum error of the linear micro-deformation was within 3% and 11%, respectively.

References

1.
Yang
,
C.
,
Ye
,
W.
, and
Li
,
Q. C.
,
2022
, “
Review of the Performance Optimization of Parallel Manipulators
,”
Mech. Mach. Theory
,
170
, p.
104725
.
2.
Hennes
,
N.
, and
Staimer
,
D.
,
2004
, “
Application of PKM in Aerospace Manufacturing-High Performance Machining Centers ECOSPEED, ECOSPEED-F and ECOLINER
,”
Proceedings of the Fourth Chemnitz Parallel Kinematics Seminar
,
Chemnitz, Germany
,
Apr. 20–21
, pp.
557
577
.
3.
Clavel
,
R.
,
1988
, “
DELTA, a Fast Robot With Parallel Geometry
,”
18th International Symposium on Industrial Robots
,
Lausanne, Switzerland
,
Apr. 26–28
, pp.
91
100
.
4.
Li
,
Y. T.
,
He
,
L. Y.
,
Jia
,
J. M.
,
Chen
,
J. N.
,
Jun
,
L.
, and
Wu
,
C. Y.
,
2022
, “
High-Efficiency Tea Shoot Detection Method via a Compressed Deep Learning Model
,”
Int. J. Agric. Biol. Eng.
,
15
(
3
), pp.
159
166
.
5.
Liu
,
Q.
,
Liu
,
H. T.
,
Xiao
,
J. L.
,
Tian
,
W. J.
,
Ma
,
Y.
, and
Li
,
B.
,
2023
, “
Open-Architecture of CNC System and Mirror Milling Technology for a 5-Axis Hybrid Robot
,”
Rob. Comput.-Integr. Manuf.
,
81
, p.
102504
.
6.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proceedings 1965/66 of the Institute of Mechanical Engineers, Part 1
,
London, UK
,
June 1–2
, pp.
371
386
.
7.
Sun
,
T.
, and
Lian
,
B. B.
,
2018
, “
Stiffness and Mass Optimization of Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
120
, pp.
73
88
.
8.
Yang
,
L. W.
,
Tian
,
X. Z.
,
Li
,
Z. L.
,
Chai
,
F. M.
, and
Dong
,
D. Y.
,
2019
, “
Numerical Simulation of Calibration Algorithm Based on Inverse Kinematics of the Parallel Mechanism
,”
Optik
,
182
(
4
), pp.
555
564
.
9.
Han
,
J. D.
, “
Active Modeling and Control for Soft Robots
,”
The 16th International Conference on Intelligent Robotics and Applications
,
Hangzhou, China
,
July 5–7
. https://icira2023.org/
10.
Deblaise
,
D.
,
Hernot
,
X.
, and
Maurine
,
P.
,
2006
, “
A Systematic Analytical Method for PKM Stiffness Matrix Calculation. ICRA 2006
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
, pp.
4213
4219
.
11.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2019
, “
Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis
,”
Mech. Mach. Theory
,
133
, pp.
365
394
.
12.
Yan
,
S. J.
,
Ong
,
S. K.
, and
Nee
,
A. Y. C.
,
2016
, “
Stiffness Analysis of Parallelogram-Type Parallel Manipulators Using a Strain Energy Method
,”
Rob. Comput. Integr. Manuf.
,
37
, pp.
13
22
.
13.
Rezaei
,
A.
,
Akbarzadeh
,
A.
, and
Akbarzadeh-T
,
M. R.
,
2012
, “
An Investigation on Stiffness of a 3-PSP Spatial Parallel Mechanism With Flexible Moving Platform Using Invariant Form
,”
Mech. Mach. Theory
,
51
, pp.
195
216
.
14.
Hu
,
B.
, and
Huang
,
Z.
,
2016
, “
Kinetostatic Model of Overconstrained Lower Mobility Parallel Manipulators
,”
Nonlinear Dyn.
,
86
(
1
), pp.
309
322
.
15.
Lu
,
Y.
, and
Hu
,
B.
,
2008
, “
Analysis of Stiffness and Elastic Deformation for Some 3-5-DOF PKMs With SPR or RPS-Type Legs
,”
ASME J. Mech. Des.
,
130
(
10
), p.
102307
.
16.
Xu
,
Y. D.
,
Yao
,
J. T.
, and
Zhao
,
Y. S.
,
2015
, “
Internal Forces Analysis of the Active Overconstrained Parallel Manipulators
,”
Int. J. Rob. Autom.
,
30
(
5
), pp.
511
518
.
17.
Ye
,
N. J.
, and
Hu
,
B.
,
2022
, “
Stiffness Modeling of Some 4-DOF Over-Constrained Parallel Manipulators With Various Constrained Wrench Forms
,”
Mech. Mach. Theory
,
172
, p.
104821
.
18.
Zhang
,
J.
,
Zhao
,
Y. Q.
, and
Luo
,
H. W.
,
2017
, “
Hybrid-Model-Based Stiffness Analysis of a Three-Revolute-Prismatic-Spherical Parallel Kinematic Machine
,”
Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf.
,
231
(
14
), pp.
2561
2576
.
19.
Zhang
,
J.
,
Zhao
,
Y. Q.
, and
Jin
,
Y.
,
2016
, “
Kinetostatic-Model-Based Stiffness Analysis of Exechon PKM
,”
Rob. Comput.-Integr. Manuf.
,
37
, pp.
208
220
.
20.
Yang
,
C.
,
Li
,
Q. C.
,
Chen
,
Q. H.
, and
Xu
,
L. M.
,
2018
, “
Elastostatic Stiffness Modeling of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
122
, pp.
58
74
.
21.
Yang
,
C.
,
Li
,
Q. C.
, and
Chen
,
Q. H.
,
2020
, “
Analytical Elastostatic Stiffness Modeling of Parallel Manipulators Considering the Compliance of Link and Joint
,”
Appl. Math. Modell.
,
78
, pp.
322
349
.
22.
Arakelian
,
V.
, and
Zhang
,
Y.
,
2019
, “
An Improved Design of Gravity Compensators Based on the Inverted Slider-Crank Mechanism
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
034501
.
23.
Lian
,
B. B.
,
Sun
,
T.
,
Song
,
Y. M.
,
Jin
,
Y.
, and
Price
,
M.
,
2015
, “
Stiffness Analysis and Experiment of a Novel 5-DoF Parallel Kinematic Machine Considering Gravitational Effects
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
82
96
.
24.
Li
,
Q.
,
Wang
,
M. X.
,
Huang
,
T.
, and
Chetwynd
,
G. D.
,
2015
, “
Compliance Analysis of a 3-DOF Spindle Head by Considering Gravitational Effects
,”
Chinese J. Mech. Eng.
,
28
(
1
), pp.
1
10
.
25.
Wang
,
M. X.
,
Liu
,
H. T.
,
Huang
,
T.
, and
Chetwynd
,
G. D.
,
2015
, “
Compliance Analysis of a 3-SPR Parallel Mechanism With Consideration of Gravity
,”
Mech. & Mach. Theory
,
84
, pp.
99
112
.
26.
Guan
,
J. L.
,
Zou
,
P.
,
Xu
,
J. L.
, and
Wang
,
W. J.
,
2023
, “
Stiffness Characteristics Analysis of a Biglide Industrial Parallel Robot Considering the Gravity of Mobile Platform and Links
,”
Sci. Rep.
,
13
(
1
), p.
7333
.
27.
Nguyen Vu
,
L.
, and
Kuo
,
C. H.
,
2019
, “
An Analytical Stiffness Method for Spring-Articulated Planar Serial or Quasi-Serial Manipulators Under Gravity and an Arbitrary Load
,”
Mech. Mach. Theory
,
137
, pp.
108
126
.
28.
Klimchik
,
A.
,
Chablat
,
D.
, and
Pashkevich
,
A.
,
2014
, “
Stiffness Modeling for Perfect and Non-Perfect Parallel Manipulators Under Internal and External Loadings
,”
Mech. Mach. Theory
,
79
, pp.
1
28
.
29.
Wu
,
H.
,
Liang
,
Z. K.
,
Zhang
,
Z.
,
Kong
,
L. Y.
,
Wang
,
H.
, and
Chen
,
G. L.
,
2024
, “
Kinetostatics Modeling and Elasto-Geometrical Calibration of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
191
, p.
105490
.
30.
Chen
,
J.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Chong
,
Z. H.
,
2023
, “
Elasto-Geometrical Calibration of a Hybrid Mobile Robot Considering Gravity Deformation and Stiffness Parameter Errors
,”
Rob. Comput.-Integr. Manuf.
,
79
, p.
102437
.
31.
Yang
,
C.
,
Huang
,
F. L.
,
Ye
,
W.
, and
Chen
,
Q. H.
,
2023
, “
Gravity-Based Kinetostatic Modeling of Parallel Manipulators Using Screw Theory
,”
Chinese J. Mech. Eng.
,
36
(
1
), p.
152
.
32.
Chen
,
G. L.
,
Zhang
,
Z.
,
Kong
,
L. Y.
, and
Wang
,
H.
,
2020
, “
Analysis and Validation of a Flexible Planar Two Degrees-of-Freedom Parallel Manipulator With Structural Passive Compliance
,”
J. Mech. Rob.-Trans. ASME
,
12
(
1
), p.
011011
.
33.
Chen
,
G. L.
,
Kang
,
Y. Z.
,
Liang
,
Z. K.
,
Zhang
,
Z.
, and
Wang
,
H.
,
2021
, “
Kinetostatics Modeling and Analysis of Parallel Continuum Manipulators
,”
Mech. Mach. Theory
,
163
, p.
104380
.
34.
Yang
,
C.
,
Li
,
Q. C.
, and
Chen
,
Q. H.
,
2020
, “
Decoupled Elastostatic Stiffness Modeling of Parallel Manipulators Based on the Rigidity Principle
,”
Mech. Mach. Theory
,
145
, p.
103718
.
35.
Xu
,
Y. D.
,
Yao
,
J. T.
,
Jin
,
L. R.
, and
Zhao
,
Y. S.
,
2015
, “
Method for Force Analysis of the Overconstrained Parallel Mechanism Considering the Link's Spatial Composite Elastic Deformations
,”
J. Mech. Eng.
,
51
(
7
), pp.
53
60
.
You do not currently have access to this content.