Abstract

Legged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of novel reconfigurable parallel linkages that not only produce different walking patterns but also realize behaviors beyond locomotion. Experiments with an implemented wearable device able to guide the lower extremity through multiple human-like walking trajectories are presented and the preliminary results validate the proposed approach.

References

1.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2011
,
Geometric Design of Linkages
,
Springer
,
New York
.
2.
Wensing
,
P. M.
,
Posa
,
M.
,
Hu
,
Y.
,
Escande
,
A.
,
Mansard
,
N.
, and
Prete
,
A. D.
,
2024
, “
Optimization-Based Control for Dynamic Legged Robots
,”
IEEE Trans. Robot.
,
40
, pp.
43
63
.
3.
Singh
,
S.
,
Russell
,
R. P.
, and
Wensing
,
P. M.
,
2024
, “
On Second-Order Derivatives of Rigid-Body Dynamics: Theory and Implementation
,”
IEEE Trans. Robot.
,
40
, pp.
2233
2253
.
4.
Katayama
,
S.
,
Murooka
,
M.
, and
Tazaki
,
Y.
,
2023
, “
Model Predictive Control of Legged and Humanoid Robots: Models and Algorithms
,”
Adv. Robot.
,
37
(
5
), pp.
298
315
.
5.
Kamimura
,
A.
,
Kurokawa
,
H.
,
Yoshida
,
E.
,
Murata
,
S.
,
Tomita
,
K.
, and
Kokaji
,
S.
,
2005
, “
Automatic Locomotion Design and Experiments for a Modular Robotic System
,”
IEEE/ASME Trans. Mech.
,
10
(
3
), pp.
314
325
.
6.
Sun
,
Y.
,
Ma
,
S.
,
Yang
,
Y.
, and
Pu
,
H.
,
2012
, “
Towards Stable and Efficient Legged Race-Walking of an Epaddle-Based Robot
,”
Mechatronics
,
23
(
1
), pp.
108
120
.
7.
Paul
,
C.
,
Roberts
,
J. W.
,
Lipson
,
H.
, and
Cuevas
,
F. J. V.
,
2005
, “
Gait Production in a Tensegrity Based Robot
,”
12th International Conference on Advanced Robotics
,
Seattle, WA
,
July 18–20
, pp.
216
222
.
8.
Hutter
,
M.
,
Remy
,
C. D.
,
Hoepflinger
,
M. A.
, and
Siegwart
,
R.
,
2013
, “
Efficient and Versatile Locomotion With Highly Compliant Legs
,”
IEEE/ASME Trans. Mech.
,
18
(
2
), pp.
449
458
.
9.
Paul
,
C.
,
2006
, “
Morphological Computation: A Basis for the Analysis of Morphology and Control Requirements
,”
Rob. Auton. Syst.
,
54
(
8
), pp.
619
630
.
10.
Tsujita
,
K.
,
Kobayashi
,
T.
,
Inoura
,
T.
, and
Masuda
,
T.
,
2008
, “
Gait Transition by Tuning Muscle Tones Using Pneumatic Actuators in Quadruped Locomotion
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, pp.
2453
2458
.
11.
Cham
,
J.
,
Karpick
,
J.
, and
Cutkosky
,
M.
,
2004
, “
Stride Period Adaptation of a Biomimetic Running Hexapod
,”
Int. J. Robot. Res.
,
23
(
2
), pp.
141
153
.
12.
Fukuoka
,
Y.
,
Kimura
,
H.
, and
Cohen
,
A.
,
2003
, “
Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts
,”
Int. J. Robot. Res.
,
22
(
3
), pp.
187
202
.
13.
Nansai
,
S.
,
Rojas
,
N.
,
Elara
,
M.
,
Sosa
,
R.
, and
Iwase
,
M.
,
2015
, “
On a Jansen Leg With Multiple Gait Patterns for Reconfigurable Walking Platforms
,”
Adv. Mech. Eng.
,
7
(
3
), pp.
1
18
.
14.
Robson
,
N.
, and
McCarthy
,
J.
,
2007
, “
Kinematic Synthesis With Contact Direction and Curvature Constraints on the Workpiece
,”
ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, NV
,
Sept. 4–7
, pp.
581
588
.
15.
Robson
,
N.
, and
Ghosh
,
S.
,
2016
, “
Geometric Design of Planar Mechanisms Based on Virtual Guides for Manipulation
,”
Robotica
,
34
(
12
), pp.
2653
2668
.
16.
Robson
,
N.
,
Ghosh
,
S.
, and
Soh
,
G.
,
2020
, “
Kinematic Synthesis and Design of the Robust Closed Loop Articulated Minimally Actuated (Clam) Hand
,”
Robotica
,
38
(
11
), pp.
1921
1939
.
17.
Robson
,
N.
, and
Soh
,
G.
,
2016
, “
Geometric Design of Eight-Bar Wearable Devices Based on Limb Physiological Contact Task
,”
Mech. Mach. Theory
,
100
, pp.
358
367
.
18.
Robson
,
N.
,
Audrey
,
V.
,
Dwivedi
,
A.
, and
Kunzmann
,
D.
,
2024
, “
Robust Multilegged Walking Robots for Interactions With Different Terrains
,”
ASME. J. Mech. Rob.
,
16
(
1
), p. 011010.
19.
Zhang
,
L.
,
Wang
,
L.
,
Wang
,
F.
, and
Wang
,
K.
,
2009
, “
Gait Simulation of New Robot for Human Walking on Sand
,”
J. Cent. South Univ. Technol. Engl. Ed.
,
16
(
12
), pp.
971
975
.
20.
Ghosh
,
S.
,
Robson
,
N.
, and
McCarthy
,
J.
,
2015
, “
Geometric Design of a Passive Mechanical Knee for Lower Extremity Wearable Devices Based on Anthropomorphic Foot Task Geometry Scaling
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
9
.
21.
Craig
,
J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Pearson Prentice Hall
,
Upper Saddle River, UK
.
22.
McCarthy
,
J.
,
2019
,
Kinematic Synthesis of Mechanisms: A Project Based Approach
,
McCarthy Design Associates Publishing
,
Irvine, CA
.
23.
Åstrand
,
P.-O.
, and
Rodahl
,
K.
,
1986
,
Textbook of Work Physiology Physiological Basis of Exercise
,
McGraw-Hill
,
New York
.
24.
Borg
,
G.
,
1998
,
Simple Rating for Estimation of Perceived Exertion and Pain Scales
,
Champaign, IL
.
25.
McAtamney
,
L.
, and
Hignett
,
S.
,
1995
, “
REBA: A Rapid Entire Body Assessment Method for Investigating Work Related Musculoskeletal Disorders
,”
Proceedings of the 31st Annual Conference of the Ergonomics Society of Australia
,
Glenelg, Australia
,
Dec. 13–15
, pp.
45
51
.
You do not currently have access to this content.