Lamina emergent mechanisms (LEMs) are fabricated from planar materials (lamina) and have motion that emerges out of the fabrication plane. LEMs provide an opportunity to create compact, cost-effective devices that are capable of accomplishing sophisticated mechanical tasks. They offer the advantages of planar fabrication, a flat initial state (compactness), and monolithic composition (which provides the advantages associated with compliant mechanisms). These advantages come with the tradeoff of challenging design issues. LEM challenges include large, nonlinear deflections, singularities due to two possible motion configurations as they leave their planar state, and coupling of material properties and geometry in predicting mechanism behavior. This paper defines lamina emergent mechanisms, motivates their study, and proposes a fundamental framework on which to base future LEM design. This includes the fundamental components (created by influencing geometry, material properties, and boundary conditions) and basic mechanisms (including planar four-bars and six-bars, and spherical and spatial mechanisms).

1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Jacobsen
,
J. O.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2007, “
Fundamental Components for Lamina Emergent Mechanisms
,”
ASME
Paper No. IMECE2007-42311.
3.
Lusk
,
C.
, and
Howell
,
L.
, 2008, “
Components, Building Blocks, and Demonstrations of Spherical Mechanisms in Microelectromechanical Systems
,”
ASME J. Mech. Des.
0161-8458,
130
(
3
), p.
034503
.
4.
Sandia National Laboratories
, 2005,
SUMMiT V—Five Level Surface Micromachining Technology Design Manual
,
Microelectronics Development Laboratory, Sandia National Laboratories
.
5.
Carter
,
J.
,
Cowen
,
A.
,
B.
,
H.
,
Mahadevan
,
R.
,
Stonefield
,
M.
, and
Wilcenski
,
S.
, 2005,
PolyMUMPs Design Handbook
, Revision 11.0,
MEMSCAP Inc.
.
6.
Tanner
,
D. M.
,
Smith
,
N. F.
,
Irwin
,
L. W.
,
Eaton
,
W. P.
,
Helgesen
,
K. S.
,
Clement
,
J. J.
,
Miller
,
W. M.
,
Walraven
,
J. A.
,
Peterson
,
K. A.
,
Tangyunyong
,
P.
,
Dugger
,
M. T.
, and
Miller
,
S. L.
, 2000, “
MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes
,” Sandia National Laboratories Report No. SAND2000-0091.
7.
Howell
,
L. L.
, and
Midha
,
A.
, 1994, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
0161-8458,
116
(
1
), pp.
280
290
.
8.
Howell
,
L. L.
, and
Midha
,
A.
, 1995, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
117
(
1
), pp.
156
165
.
9.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T. W.
, 1996, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
126
131
.
10.
Canfield
,
S.
, and
Frecker
,
M.
, 2000, “
Topology Optimization of Compliant Mechanical Amplifiers for Piezoelectric Actuators
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
4
), pp.
269
279
.
11.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
12
), pp.
2683
2705
.
12.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
Topology Optimization for Synthesis of Contact-Aided Compliant Mechanisms Using Regularized Contact Modeling
,”
Comput. Struct.
0045-7949,
82
(
15–16
), pp.
1267
1290
.
13.
Chen
,
S.
, and
Wang
,
M. Y.
, 2007, “
Designing Distributed Compliant Mechanisms With Characteristic Stiffness
,”
ASME
Paper No. DETC2007-34437.
14.
Lu
,
K. -J.
, and
Kota
,
S.
, 2006, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
(
5
), pp.
1080
1091
.
15.
Parise
,
J. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2000, “
Ortho-Planar Mechanisms
,”
ASME
Paper No. DETC2000/MECH-14193.
16.
McCarthy
,
J. M.
, 2000,
Geometric Design of Linkages
,
Springer
,
New York
.
17.
Parise
,
J. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2001, “
Ortho-Planar Linear-Motion Springs
,”
Mech. Mach. Theory
0094-114X,
36
(
11–12
), pp.
1281
1300
.
18.
Lusk
,
C. P.
, 2005, “
Ortho-Planar Mechanisms for Microelectromechanical Systems
,” Ph.D. thesis, Brigham Young University, Provo, UT.
19.
Carroll
,
D. W.
,
Magleby
,
S. P.
,
Howell
,
L. L.
,
Todd
,
R. H.
, and
Lusk
,
C. P.
, 2005, “
Simplified Manufacturing Through a Metamorphic Process for Compliant Ortho-Planar Mechanisms
,”
ASME
Paper No. IMECE2005-80293.
20.
Lusk
,
C. P.
, and
Howell
,
L. L.
, 2006, “
Design Space of Single-Loop Planar Folded Micro Mechanisms With Out-of-Plane Motion
,”
ASME J. Mech. Des.
0161-8458,
128
(
5
), pp.
1092
1100
.
21.
Dai
,
J. S.
, and
Jones
,
J. R.
, 1999, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
0161-8458,
121
(
3
), pp.
375
382
.
22.
Dai
,
J. S.
, and
Jones
,
J. R.
, 2005, “
Matrix Representation of Topological Configuration Transformation of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
837
840
.
23.
Kuo
,
C. H.
, and
Yan
,
H. S.
, 2007, “
On the Mobility and Configuration Singularity of Mechanisms With Variable Topologies
,”
ASME J. Mech. Des.
0161-8458,
129
(
6
), pp.
617
624
.
24.
Dai
,
J. S.
, and
Cannella
,
F.
, 2008, “
Stiffness Characteristics of Carton Folds for Packaging
,”
ASME J. Mech. Des.
0161-8458,
130
(
2
), p.
022305
.
25.
Liu
,
H.
, and
Dai
,
J. S.
, 2002, “
Carton Manipulation Analysis Using Configuration Transformation
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
(
C5
), pp.
543
555
.
26.
Dubey
,
V. N.
, and
Dai
,
J. S.
, 2006, “
A Packaging Robot for Complex Cartons
,”
Ind. Robot
0143-991X,
33
(2), pp.
82
87
.
27.
Dai
,
J. S.
, and
Qixian
,
Z.
, 2000, “
Metamorphic Mechanisms and Their Configuration Models
,”
Chin. J. Mech. Eng.
0577-6686,
13
(
3
), pp.
212
218
.
28.
Dehdashti
,
G.
, and
Schmidt
,
L. C.
, 1995, “
Barrel-Vault Space Trusses Shaped by Posttensioning
,”
J. Struct. Eng.
0733-9445,
121
(
12
), pp.
1758
1764
.
29.
Schmidt
,
L. C.
, and
Li
,
H.
, 1995, “
Geometric Models of Deployable Metal Domes
,”
J. Archit. Eng.
1076-0431,
1
(
3
), pp.
115
120
.
30.
Dehdashti
,
G.
, and
Schmidt
,
L. C.
, 1996, “
Dome-Shaped Space Trusses Formed by Means of Posttensioning
,”
J. Struct. Eng.
0733-9445,
122
(
10
), pp.
1240
1245
.
31.
Onoda
,
J.
,
Fu
,
D. Y.
, and
Minesugi
,
K.
, 1996, “
Two-Dimensional Deployable Hexapod Truss
,”
J. Spacecr. Rockets
0022-4650,
33
(
3
), pp.
416
421
.
32.
Takamatsu
,
K. A.
, and
Onoda
,
J.
, 1991, “
New Deployable Truss Concepts for Large Antenna Structures or Solar Concentrators
,”
J. Spacecr. Rockets
0022-4650,
28
(
3
), pp.
330
338
.
33.
Gan
,
W.
, and
Pellegrino
,
S.
, 2006, “
Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
220
(
7
), pp.
1045
1056
.
34.
Chen
,
Y.
, and
You
,
Z.
, 2005, “
Mobile Assemblies Based on the Bennett Linkage
,”
Proc. R. Soc. London, Ser. A
0950-1207,
461
, pp.
1229
1245
.
35.
Chen
,
Y.
, and
You
,
Z.
, 2004, “
Deployable Structures Based on the Bricard Linkages
,”
Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, AIAA Paper No. 2004-1604.
36.
Baker
,
J. E.
, 2007, “
Kinematic Investigation of the Deployable Bennett Loop
,”
ASME J. Mech. Des.
0161-8458,
129
(
6
), pp.
602
610
.
37.
Baker
,
J. E.
, 2006, “
On Generating a Class of Foldable Six-Bar Spatial Linkages
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
374
383
.
38.
Melin
,
N. O.
, 2004, “
Application of Bennett Mechanisms to Long-Span Shelters
,” Ph.D. thesis, University of Oxford, Oxford, England.
39.
Chen
,
Y.
, 2003, “
Design of Structural Mechanisms
,” Ph.D. thesis, University of Oxford, Oxford, England.
40.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2002. “
Contact Aided Compliant Mechanisms: Concept and Preliminaries
,” ASME Paper No. DETC2002/MECH-34211.
41.
Mackay
,
A. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
, 2007, “
A Pseudo-Rigid-Body Model for Rolling-Contact Compliant Beams
,” ASME Paper No. DETC2007-35536.
42.
Mankame
,
N.
, and
Ananthasuresh
,
G.
, 2006, “
Synthesis of contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Vol.
4
, pp.
2281
2303
.
43.
Wolhart
,
K.
, 1996, “
Kinematotropic Mechanisms
,”
Recent Advances in Robot Kinematics
,
Kluwer
,
Dordrecht, The Netherlands
.
44.
Galletti
,
C.
, and
Giannotti
,
E.
, 2002, “
Multiloop Kinematotrophic Mechanisms
,”
Proceedings of the 2002 ASME Design Engineering Technical Conferences
, pp.
455
460
.
45.
Balkcom
,
D.
, 2004, “
Robotic Origami Folding
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
46.
Song
,
G.
, and
Amato
,
N. M.
, 2004, “
A Motion Planning Approach to Folding: From Paper Craft to Protein Folding
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
1
), pp.
60
71
.
47.
Hull
,
T.
, and
Belcastro
,
S. M.
, 2001, “
Modeling the Folding of Paper Into Three Dimensions
,”
Proceedings of the 3rd International Meeting of Origami Science, Math, and Education
.
48.
Hoffmann
,
R.
, 2001, “
Airbag Folding: Origami Design Applied to an Engineering Problem
,”
Proceedings of the 3rd International Meeting of Origami Science, Math, and Education
.
49.
Hyde
,
R.
, and
Dixit
,
S.
, 2001, “
Use of Origami in Fielding Very Large Space Telescopes
,”
Proceedings of the 3rd International Meeting of Origami Science, Math, and Education
.
50.
Balkcom
,
D. J.
,
Demaine
,
E. D.
, and
Demaine
,
M. L.
, 2004, “
Folding Paper Shopping Bags
,”
Proceedings of the 14th Annual Fall Workshop on Computational Geometry
, pp.
14
15
.
51.
Rodriguez Leal
,
E.
, and
Dai
,
J. S.
, 2007, “
From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms
,” ASME Paper No. DETC2007-35516.
52.
Yao
,
W.
, and
Dai
,
J.
, 2008, “
Dexterous Manipulation of Origami Cartons With Robotic Fingers Based on the Interactive Configuration Space
,”
ASME J. Mech. Des.
0161-8458,
130
(
2
), p.
022303
.
53.
Jackson
,
P.
, and
Forrester
,
P.
, 1993,
The Pop-Up Book: Step-by-Step Instructions for Creating Over 100 Original Paper Projects
,
LLC
,
New York
.
54.
Carter
,
D. A.
, and
Diaz
,
J.
, 1999,
The Elements of Pop-Up: A Pop-Up Book for Aspiring Paper Engineers
,
Little Simon
,
New York
.
55.
Birmingham
,
D.
, 2006,
Pop-Up! A Manual of Paper Mechanisms
,
Tarquin Publications
,
St. Albans, United Kingdom
.
56.
Last
,
M.
,
Subramaniam
,
V.
, and
Pister
,
K.
, 2005, “
Out of Plane Motion of Assembled Microstructures Using a Single-Mask SOI Process
,”
Digest of Technical Papers—International Conference on Solid State Sensors and Actuators and Microsystems, TRANSDUCERS ‘05
,
1
, pp.
684
687
. 0002-7820
57.
Lusk
,
C. P.
, and
Howell
,
L. L.
, 2008, “
Spherical Bistable Micromechanism
,”
ASME J. Mech. Des.
,
130
(
4
), p.
045001
. 0002-7820
58.
Vehar
,
C.
,
Kota
,
S.
, and
Dennis
,
R.
, 2004. “
Closed-Loop Tape Springs as Fully Compliant Mechanisms—Preliminary Investigations
,” ASME Paper No. DETC2004-57403.
59.
Zhou
,
H.
, and
Ting
,
K. -L.
, 2008, “
Geometric Modeling and Optimization of Multimaterial Compliant Mechanisms Using Multilayer Wide Curves
,”
ASME J. Mech. Des.
,
130
, p.
062303
. 0002-7820
60.
Henrie
,
A. J. M.
, and
Howell
,
L. L.
, 1998, “
Variable Compliance Via Magneto-Rheological Materials
,”
Proceedings of the 43rd International SAMPE Symposium
, pp.
431
443
.
61.
Shulman
,
Z. P.
, and
Kordonsky
,
V. I.
, 1982,
The Magneto-Rheological Effect
,
Nauka i Tekhnika
,
Minsk
.
62.
Halsey
,
T. C.
, 1992, “
Electrorheological Fluids
,”
Science
,
258
(
5083
), pp.
761
766
.
63.
DiBiasio
,
C. M.
,
Culpepper
,
M. L.
,
Panas
,
R.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2008, “
Comparison of Molecular Simulation and Pseudo-Rigid-Body Model Predictions for a Carbon Nanotube-Based Compliant Parallel-Guiding Mechanism
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042308
. 0002-7820
64.
Hartenburg
,
R. S.
, and
Denavit
,
J.
,
Kinematic Synthesis of Linkages
(
McGraw-Hill
,
New York
, 1964).
65.
Barker
,
C. R.
, 1985, “
Complete Classification of Planar Four-Bar Linkages
,”
Mech. Mach. Theory
,
20
(
6
), pp.
535
554
.
66.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, “
Lamina Emergent Torsion (LET) Joint
,”
Mech. Mach. Theory
, in press.
67.
Hunt
,
K. H.
, 1990,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
68.
Winder
,
B. G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
, 2008, “
A Study of Joints Suitable for Lamina Emergent Mechanisms
,” ASME Paper No. DETC2008-49914.
69.
Winder
,
B. G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
, 2009, “
Kinematic Representations of Pop-Up Paper Mechanisms
,”
ASME J. Mech. Rob.
,
1
(2), p.
021009
. 0002-7820
70.
Barker
,
C. R.
, and
Lo
,
J.
, 1986, “
Classification of Spherical Four-Bar Mechanisms
,” ASME Paper No. 86-DET-144.
71.
Chiang
,
C.
, 1988,
Kinematics of Spherical Mechanisms
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.