Recently, there has been an increased interest in origami art from a mechanism design perspective. The deployable nature and the planar fabrication method inherent to origami provide potential for space and cost-efficient mechanisms. In this paper, a novel type of origami mechanisms is proposed in which the compliance of the facets is used to incorporate the spring behavior: compliant facet origami mechanisms (COFOMs). A simple model that computes the moment characteristic of a single vertex COFOM has been proposed, using a semispatial version of the pseudo-rigid-body (PRB) theory to model bending of the facets. The PRB model has been evaluated numerically and experimentally, showing good performance. The PRB model is a potential starting point for a design tool which would provide an intuitive way of designing this type of mechanisms including their spring behavior, with very low computational cost.

References

1.
Zirbel
,
S. A.
,
Wilson
,
M. E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
An Origami-Inspired Self-Deployable Array
,”
ASME
Paper No. SMASIS2013-3296.
2.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of ni-Rich Tini Shape Memory Alloy Foil
,”
Mater. Sci. Eng.: A
,
419
(
1
), pp.
131
137
.
3.
Greenberg
,
H. C.
,
Gong
,
M. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
217
225
.
4.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.
5.
Wilcox
,
E. W.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
, “
Exploring Movements and Potential Actuation in Action Origami
,”
ASME
Paper No. DETC2014-34428.
6.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
9
), pp.
3276
3281
.
7.
Tachi
,
T.
,
2013
, “
Interactive Form-Finding of Elastic Origami
,”
Proceedings of The International Association for Shell and Spatial Structures
(
IASS
), Wroclaw, Poland, Sept. 23–27.
8.
Saito
,
K.
,
Tsukahara
,
A.
, and
Okabe
,
Y.
,
2015
, “
New Deployable Structures Based on an Elastic Origami Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021402
.
9.
Silverberg
,
J. L.
,
Na
,
J.-H.
,
Evans
,
A. A.
,
Liu
,
B.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hayward
,
R. C.
, and
Cohen
,
I.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(
4
), pp.
389
393
.
10.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
11.
Herder
,
J. L.
, and
Van Den Berg
,
F. P. A.
,
2000
, “
Statically Balanced Compliant Mechanisms (Sbcms), an Example and Prospects
,” Proceedings ASME DETC 26th Biennial Mechanisms and Robotics Conference, Paper No. DETC2000/MECH-14144.
You do not currently have access to this content.