Background: Biodegradable polymeric stents represent a competitive approach to permanent and absorbable metallic stents for vascular applications. Despite major challenges resulting from the mechanical properties of polymeric biomaterials, these stent concepts gain their attraction from their intrinsic potential for controlled biodegradation and facile drug incorporation. This study demonstrates the mechanical properties of a novel balloon-expandable slotted tube stent from PLLA. Method of Approach: Polymeric balloon-expandable slotted tube stents (nominal dimensions: 6.0×25mm) were manufactured by laser machining of solution cast tubes (I.D.=2.8mm, d=270±20μm) from biodegradable (1) PLLA and (2) PLLA/PCL/TEC. The stents were tested in vitro for their mechanical properties: deployment, recoil, shortening, collapse, and creep behavior under a static load of 100mmHg. In vitro degradation was performed in Sørensen buffer solution at 37°C. After 02481224 weeks the remaining collapse stability and molecular weight were assessed. Results: All stents could be deployed by balloon inflation to 8bar at 1barmin (PLLA) and 3barmin (PLLA/PCL/TEC). Recoil, shortening, and collapse pressure were: 2.4%3.4%0.67bar (PLLA), and 8.8%2.3%0.23bar (PLLA/PCL/TEC). A static load of 100mmHg induced pronounced creep processes in the PLLA/PCL/TEC stent. The PLLA stent remained patent and exhibited no creep propensity. During in vitro degradation an increase in collapse pressure was observed (maxima at 12w: 1.3bar (PLLA), 0.7bar (PLLA/PCL/TEC)). At 24 weeks, molecular weight was decreased by 28% (PLLA), and 52% (PLLA/PCL/TEC). Conclusions: Stents fabricated from pure PLLA exhibited adequate mechanical properties. The slow permissible deployment rate, however, limits their potential application range and demands further development.

1.
Zidar
,
J.
, et al.
, 1994, “
Biodegradable Stents
,”
Textbook of Interventional Cardiology
, 2nd ed.,
E.
Topol
, ed.,
W.B. Saunders
, Philadelphia, pp.
787
802
.
2.
Colombo
,
A.
, and
Karvouni
,
E.
, 2000, “
Biodegradable Stents: Fulfilling the Mission and Stepping Away
,”
Circulation
0009-7322,
102
(
4
), pp.
371
373
.
3.
Tsuji
,
T.
,
Tamai
,
H.
,
Igaki
,
K.
,
Kyo
,
E.
,
Kosuga
,
K.
,
Hata
,
T.
,
Okada
,
M.
,
Nakamura
,
T.
,
Komori
,
H.
,
Motohara
,
S.
, and
Uehata
,
H.
, 2001, “
Biodegradable Polymeric Stents
,”
Curr. Interv. Cardiol. Rep.
,
3
(
1
), pp.
10
17
.
4.
Eberhart
,
R. C.
,
Su
,
S. H.
,
Nguyen
,
K. T.
,
Zilberman
,
M.
,
Tang
,
L.
,
Nelson
,
K. D.
, and
Frenkel
,
P.
, 2003, “
Bioresorbable Polymeric Stents: Current Status and Future Promise
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
14
(
4
), pp.
299
312
.
5.
Erne
,
P.
,
Schier
,
M.
, and
Resink
,
T. J.
, 2006, “
The Road to Bioabsorbable Stents: Reaching Clinical Reality?
,”
Cardiovasc. Intervent Radiol.
0174-1551,
29
(
1
), pp.
11
16
.
6.
Stack
,
R. S.
,
Califf
,
R. M.
,
Phillips
,
H. R.
,
Pryor
,
D. B.
,
Quigley
,
P. J.
,
Bauman
,
R. P.
,
Tcheng
,
J. E.
, and
Greenfield
,
J. C.
Jr.
, 1988, “
Interventional Cardiac Catheterization at Duke Medical Center
,”
Am. J. Cardiol.
0002-9149,
62
(
10-2
), pp.
3F
24F
.
7.
Tamai
,
H.
,
Igaki
,
K.
,
Kyo
,
E.
,
Kosuga
,
K.
,
Kawashima
,
A.
,
Matsui
,
S.
,
Komori
,
H.
,
Tsuji
,
T.
,
Motohara
,
S.
, and
Uehata
,
H.
, 2000, “
Initial and 6-Month Results of Biodegradable Poly-l-lactic Acid Coronary Stents in Humans
,”
Circulation
0009-7322,
102
(
4
), pp.
399
404
.
8.
Di Mario
,
C.
,
Griffiths
,
H.
,
Goktekin
,
O.
,
Peeters
,
N.
,
Verbist
,
J.
,
Bosiers
,
M.
,
Deloose
,
K.
,
Heublein
,
B.
,
Rohde
,
R.
,
Kasese
,
V.
,
Ilsley
,
C.
, and
Erbel
,
R.
, 2004, “
Drug-Eluting Bioabsorbable Magnesium Stent
,”
J. Interv Card. Electrophysiol.
1383-875X,
17
(
6
), pp.
391
395
.
9.
Heublein
,
B.
,
Rohde
,
R.
,
Kaese
,
V.
,
Niemeyer
,
M.
,
Hartung
,
W.
, and
Haverich
,
A.
, 2003, “
Biocorrosion of Magnesium Alloys: A New Principle in Cardiovascular Implant Technology?
,”
Heart
1355-6037,
89
(
6
), pp.
651
656
.
10.
Uurto
,
I.
,
Juuti
,
H.
,
Parkkinen
,
J.
,
Kellomaki
,
M.
,
Keski-Nisula
,
L.
,
Nevalainen
,
T.
,
Tormala
,
P.
, and
Salenius
,
J. P.
, 2004, “
Biodegradable Self-Expanding Poly-L/D-Lactic Acid Vascular Stent: A Pilot Study in Canine and Porcine Iliac Arteries
,”
J. Endovasc. Ther.
1526-6028,
11
(
6
), pp.
712
718
.
11.
Venkatraman
,
S. S.
,
Tan
,
L. P.
,
Joso
,
J. F.
,
Boey
,
J. F.
, and
Wang
,
X.
, 2006, “
Biodegradable Stents With Elastic Memories
,”
Biomaterials
0142-9612,
27
(
8
), pp.
1573
1578
.
12.
Zilberman
,
M.
,
Nelson
,
K. D.
, and
Eberhart
,
R. C.
, 2005, “
Mechanical Properties and in Vitro Degradation of Bioresorbable Fibers and Expandable Fiber-Based Stents
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
74
(
2
), pp.
792
799
.
13.
Peuster
,
M.
,
Wohlsein
,
P.
,
Brugmann
,
M.
,
Ehlerding
,
M.
,
Seidler
,
K.
,
Fink
,
C.
,
Brauer
,
H.
,
Fischer
,
A.
, and
Hausdorf
,
G.
, 2001, “
A Novel Approach to Temporary Stenting: Degradable Cardiovascular Stents Produced From Corrodible Metal-Results 6–18 Months After Implantation Into New Zealand White Rabbits
,”
Heart
1355-6037,
86
(
5
), pp.
563
569
.
14.
Tsuji
,
T.
,
Tamai
,
H.
,
Igaki
,
K.
,
Kyo
,
E.
,
Kosuga
,
K.
,
Hata
,
T.
,
Nakamura
,
T.
,
Fujita
,
S.
,
Takeda
,
S.
,
Motohara
,
S.
, and
Uehata
,
H.
, 2003, “
Biodegradable Stents as a Platform to Drug Loading
,”
Int. J. Cardiovasc. Intervent.
,
5
(
1
), pp.
13
16
.
15.
Venkatraman
,
S.
,
Poh
,
T. L.
,
Vinalia
,
T.
,
Mak
,
K. H.
, and
Boey
,
F.
, 2003, “
Collapse Pressure of Biodegradable Stents
,”
Biomaterials
0142-9612,
24
(
12
), pp.
2105
2111
.
16.
Vogt
,
F.
,
Stein
,
A.
,
Rettemeier
,
G.
,
Krott
,
N.
,
Hoffmann
,
R.
,
vom Dahl
,
J.
,
Bosserhoff
,
A. K.
,
Michaeli
,
W.
,
Hanrath
,
P.
,
Weber
,
C.
, and
Blindt
,
R.
, 2004, “
Long-Term Assessment of a Novel Biodegradable Paclitaxel-Eluting Coronary Polylactide Stent
,”
Eur. Heart J.
0195-668X,
25
(
15
), pp.
1330
1340
.
17.
Uurto
,
I.
,
Mikkonen
,
J.
,
Parkkinen
,
J.
,
Keski-Nisula
,
L.
,
Nevalainen
,
T.
,
Kellomaki
,
M.
,
Tormala
,
P.
, and
Salenius
,
J. P.
, 2005, “
Drug-Eluting Biodegradable Poly-D/L-Lactic Acid Vascular Stents: An Experimental Pilot Study
,”
J. Endovasc. Ther.
1526-6028,
12
(
3
), pp.
371
379
.
18.
Grabow
,
N.
,
Schlun
,
M.
,
Sternberg
,
K.
,
Hakansson
,
N.
,
Kramer
,
S.
, and
Schmitz
,
K. P.
, 2005, “
Mechanical Properties of Laser Cut Poly(L-lactide) Micro-Specimens: Implications for Stent Design, Manufacture and Sterilization
,”
J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
25
31
.
19.
Grabow
,
N.
,
Martin
,
H.
, and
Schmitz
,
K. P.
, 2002, “
The Impact of Material Characteristics on the Mechanical Properties of a Poly(L-lactide) Coronary Stent
,”
Biomed. Tech.
0013-5585,
47
(
Suppl. 1, Pt. 1
), pp.
503
505
.
20.
Heintz
,
B.
,
vom Dahl
,
J.
,
Roeber
,
K.
,
Doettger
,
A.
,
Hanrath
,
P.
, and
Sieberth
,
H. G.
, 1995, “
Effects of Blood Pressure Reduction on the Elastic Profile of the Aortic Tree in Patients With Coronary Heart Disease
,”
Am. J. Hypertens.
0895-7061,
8
(
6
), pp.
584
590
.
21.
Tan
,
L. P.
,
Venkatraman
,
S. S.
,
Sung
,
P. F.
, and
Wang
,
X. T.
, 2004, “
Effect of Plasticization on Heparin Release From Biodegradable Matrices
,”
Int. J. Pharm.
0378-5173,
283
(
1-2
), pp.
89
96
.
22.
Freier
,
T.
,
Kunze
,
C.
,
Nischan
,
C.
,
Kramer
,
S.
,
Sternberg
,
K.
,
Sass
,
M.
,
Hopt
,
U. T.
, and
Schmitz
,
K. P.
, 2002, “
In Vitro and In Vivo Degradation Studies for Development of a Biodegradable Patch Based on Poly(3-hydroxybutyrate)
,”
Biomaterials
0142-9612,
23
(
13
), pp.
2649
2657
.
23.
Schmidt
,
W.
,
Andresen
,
R.
,
Behrens
,
P.
, and
Schmitz
,
K. P.
, 2002, “
Characteristic Mechanical Properties of Balloon-Expandable Peripheral Stent Systems
,”
Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr
0936-6652,
174
(
11
), pp.
1430
1437
.
You do not currently have access to this content.