Abstract

Mechanical circulatory support (MCS) devices, i.e., ventricular assist devices (VADs) and total artificial hearts (TAHs), while effective and vital in restoring hemodynamics in patients with circulatory compromise in advanced heart failure, remain limited by significant adverse thrombotic, embolic and bleeding events. Many of these complications relate to chronic exposure, via these devices, to nonpulsatile flow and the high shear stress created by current methods of blood propulsion or use of prosthetic valves. Here we propose a novel noncompressing single sliding vane MCS device to: 1) dramatically reduce pump operating speed thus potentially lowering the shear stress imparted to blood; 2) eliminate utilization of prosthetic valves thus diminishing potential shear stress generations; 3) allow direct flow rate control to generate physically desired blood flow rate include pulsatile flow; and 4) achieve compactness to fit into the majority of patients. The fundamental working principle and governing design equations are introduced first with multiple design and performance objectives presented. A first prototype was fabricated and experimental tests were conducted to validate the model with a 93.10% match between theoretical and experimental flow rate results. After model validation, the proposed MCS was tested to illustrate the ability of pulsatile flow generation. Finally, it was compared with some representative MCS pumps to discuss its potential of improving current MCS design. The presented work offers a novel MCS design and paves the way for next steps in device hemocompatibility testing.

References

1.
Benjamin
,
E. J.
,
Muntner
,
P.
,
Alonso
,
A.
,
Bittencourt
,
M. S.
,
Callaway
,
C. W.
,
Carson
,
A. P.
,
Chamberlain
,
A. M.
,
Chang
,
A. R.
,
Cheng
,
S.
,
Das
,
S. R.
,
Delling
,
F. N.
,
Djousse
,
L.
,
Elkind
,
M. S. V.
,
Ferguson
,
J. F.
,
Fornage
,
M.
,
Jordan
,
L. C.
,
Khan
,
S. S.
,
Kissela
,
B. M.
,
Knutson
,
K. L.
,
Kwan
,
T. W.
,
Lackland
,
D. T.
,
Lewis
,
T. T.
,
Lichtman
,
J. H.
,
Longenecker
,
C. T.
,
Loop
,
M. S.
,
Lutsey
,
P. L.
,
Martin
,
S. S.
,
Matsushita
,
K.
,
Moran
,
A. E.
,
Mussolino
,
M. E.
,
O'Flaherty
,
M.
,
Pandey
,
A.
,
Perak
,
A. M.
,
Rosamond
,
W. D.
,
Roth
,
G. A.
,
Sampson
,
U. K. A.
,
Satou
,
G. M.
,
Schroeder
,
E. B.
,
Shah
,
S. H.
,
Spartano
,
N. L.
,
Stokes
,
A.
,
Tirschwell
,
D. L.
,
Tsao
,
C. W.
,
Turakhia
,
M. P.
,
VanWagner
,
L. B.
,
Wilkins
,
J. T.
,
Wong
,
S. S.
, and
Virani
,
S. S.
,
2019
, “
Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association
,”
Circulation
,
139
(
10
), pp.
e56
e528
.10.1161/CIR.0000000000000659
2.
Copeland
,
J. G.
,
Smith
,
R. G.
,
Arabia
,
F. A.
,
Nolan
,
P. E.
,
Sethi
,
G. K.
,
Tsau
,
P. H.
,
McClellan
,
D.
, and
Slepian
,
M. J.
,
2004
, “
Cardiac Replacement With a Total Artificial Heart as a Bridge to Transplantation
,”
N. Engl. J. Med
,
351
(
9
), pp.
859
867
.10.1056/NEJMoa040186
3.
Slaughter
,
M. S.
,
Rogers
,
J. G.
,
Milano
,
C. A.
,
Russell
,
S. D.
,
Conte
,
J. V.
,
Feldman
,
D.
,
Sun
,
B.
,
Tatooles
,
A. J.
,
Delgado
,
R. M.
, III
,
Long
,
J. W.
,
Wozniak
,
T. C.
,
Ghumman
,
W.
,
Farrar
,
D. J.
, and
Frazier
,
O. H.
,
2009
, “
Advanced Heart Failure Treated With Continuous-Flow Left Ventricular Assist Device
,”
N. Engl. J. Med
,
361
(
23
), pp.
2241
2251
.10.1056/NEJMoa0909938
4.
Strueber
,
M.
,
O'Driscoll
,
G.
,
Jansz
,
P.
,
Khaghani
,
A.
,
Levy
,
W. C.
, and
Wieselthaler
,
G. M.
,
2011
, “
Multicenter Evaluation of an Intrapericardial Left Ventricular Assist System
,”
J. Am. Coll. Cardiol
,
57
(
12
), pp.
1375
1382
.10.1016/j.jacc.2010.10.040
5.
Slepian
,
M. J.
,
Alemu
,
Y.
,
Soares
,
J. S.
,
Smith
,
R. G.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2013
, “
The Syncardia™ Total Artificial Heart: In Vivo, In Vitro, and Computational Modeling Studies
,”
J. Biomech
,
46
(
2
), pp.
266
275
.10.1016/j.jbiomech.2012.11.032
6.
Ton
,
V.-K.
,
Xie
,
R.
,
Hernandez-Montfort
,
J. A.
,
Meyns
,
B.
,
Nakatani
,
T.
,
Yanase
,
M.
,
Shaw
,
S.
,
Pettit
,
S.
,
Netuka
,
I.
,
Kirklin
,
J.
,
Goldstein
,
D. J.
, and
Cowger
,
J.
,
2020
, “
Short-And Long-Term Adverse Events in Patients on Temporary Circulatory Support Before Durable Ventricular Assist Device: An IMACS Registry Analysis
,”
J. Hear. Lung Transplant
,
39
(
4
), pp.
342
352
.10.1016/j.healun.2019.12.011
7.
Kirklin
,
J. K.
,
Pagani
,
F. D.
,
Kormos
,
R. L.
,
Stevenson
,
L. W.
,
Blume
,
E. D.
,
Myers
,
S. L.
,
Miller
,
M. A.
,
Baldwin
,
J. T.
,
Young
,
J. B.
, and
Naftel
,
D. C.
,
2017
, “
Eighth Annual Intermacs Report: Special Focus on Framing the Impact of Adverse Events
,”
J. Hear. Lung Transplant
,
36
(
10
), pp.
1080
1086
.10.1016/j.healun.2017.07.005
8.
Starling
,
R. C.
,
Moazami
,
N.
,
Silvestry
,
S. C.
,
Ewald
,
G.
,
Rogers
,
J. G.
,
Milano
,
C. A.
,
Rame
,
J. E.
,
Acker
,
M. A.
,
Blackstone
,
E. H.
,
Ehrlinger
,
J.
,
Thuita
,
L.
,
Mountis
,
M. M.
,
Soltesz
,
E. G.
,
Lytle
,
B. W.
, and
Smedira
,
N. G.
,
2014
, “
Unexpected Abrupt Increase in Left Ventricular Assist Device Thrombosis
,”
N. Engl. J. Med
,
370
(
1
), pp.
33
40
.10.1056/NEJMoa1313385
9.
Jung
,
M. S.
,
Bae
,
J. H.
, and
Kim
,
Y. H.
,
2008
, “
Relationships Between Dietary Intake and Serum Lipid Profile of Subjects Who Visited Health Promotion Center
,”
J. Korean Soc. Food Sci. Nutr
,
37
(
12
), pp.
1583
1588
.10.3746/jkfn.2008.37.12.1583
10.
Leuck
,
A.-M.
,
2015
, “
Left Ventricular Assist Device Driveline Infections: Recent Advances and Future Goals
,”
J. Thorac. Dis
,
7
(
12
), pp.
2151
2157
.
11.
Hernandez
,
G. A.
,
Nunez Breton
,
J. D.
, and
Chaparro
,
S. V.
,
2017
, “
Driveline Infection in Ventricular Assist Devices and Its Implication in the Present Era of Destination Therapy
,”
Open J. Cardiovasc. Surg
,
9
, p.
117906521771421
.10.1177/1179065217714216
12.
Timms
,
D.
,
2011
, “
A Review of Clinical Ventricular Assist Devices
,”
Med. Eng. Phys
,
33
(
9
), pp.
1041
1047
.10.1016/j.medengphy.2011.04.010
13.
Slepian
,
M. J.
,
Smith
,
R. G.
, and
Copeland
,
J. G.
,
2006
, “
The Syncardia CardiowestTM Total Artificial Heart
,”
In Treatment of Advanced Heart Disease
,
CRC Press
, Boca Raton, FL, pp.
503
520
.10.3109/9781420020168.026
14.
Maslen
,
E. H.
,
Bearnson
,
G. B.
,
Allaire
,
P. E.
,
Flack
,
R. D.
,
Baloh
,
M.
,
Hilton
,
E.
,
Noh
,
M. D.
,
Olson
,
D. B.
,
Khanwilkar
,
P. S.
, and
Long
,
J. D.
,
1997
, “
Artificial Hearts
,”
Proceedings of the 1997 IEEE International Conference on Control Applications
, Hartford, CT, Oct. 5–7,
pp.
204
209
.10.1109/CCA.1997.627539
15.
Drews
,
T.
,
Loebe
,
M.
,
Hennig
,
E.
,
Kaufmann
,
F.
,
Müller
,
J.
, and
Hetzer
,
R.
,
2000
, “
The ‘Berlin Heart’ Assist Device
,”
Perfusion
,
15
(
4
), pp.
387
396
.10.1177/026765910001500417
16.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index
,”
ASME J. Biomech. Eng
,
134
(
8
), p.
081002
.10.1115/1.4007092
17.
Girdhar
,
G.
,
Xenos
,
M.
,
Alemu
,
Y.
,
Chiu
,
W.-C.
,
Lynch
,
B. E.
,
Jesty
,
J.
,
Einav
,
S.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2012
, “
Device Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance
,”
PLoS One
,
7
(
3
), p.
e32463
.10.1371/journal.pone.0032463
18.
Bluestein
,
D.
,
Einav
,
S.
, and
Slepian
,
M. J.
,
2013
, “
Device Thrombogenicity Emulation: A Novel Methodology for Optimizing the Thromboresistance of Cardiovascular Devices
,”
J. Biomech
,
46
(
2
), pp.
338
344
.10.1016/j.jbiomech.2012.11.033
19.
Li
,
M.
,
Foss
,
R.
,
Stelson
,
K. A.
,
Van De Ven
,
J.
, and
Barth
,
E. J.
,
2019
, “
Design, Dynamic Modeling, and Experimental Validation of a Novel Alternating Flow Variable Displacement Hydraulic Pump
,”
IEEE/ASME Trans. Mechatr.
,
24
(
3
), pp.
1294
1305
.10.1109/TMECH.2019.2906859
20.
Wappenschmidt
,
J.
,
Sonntag
,
S. J.
,
Buesen
,
M.
,
Gross-Hardt
,
S.
,
Kaufmann
,
T.
,
Schmitz-Rode
,
T.
,
Autschbach
,
R.
, and
Goetzenich
,
A.
,
2017
, “
Fluid Dynamics in Rotary Piston Blood Pumps
,”
Ann. Biomed. Eng
,
45
(
3
), pp.
554
566
.10.1007/s10439-016-1700-9
21.
Lin
,
F.
,
Yao
,
L.
,
Zheng
,
R.
,
Li
,
W.
, and
Fang
,
C.
,
2016
, “
A Novel Ventricular Assist Miniscule Maglev Nutation Pump: Structure Design, 3D Modelling and Simulation
,”
In Mechanism and Machine Science
,
Springer
, Singapore, Vol. 408, pp.
443
453
.10.1007/978-981-10-2875-5_37
22.
Li
,
M.
, and
Barth
,
E. J.
,
2018
, “
Spherical Gerotor: Synthesis of a Novel Valveless Pulsatile Flow Spherical Total Artificial Heart
,”
J. Mech. Eng. Autom.
,
8
(
7
), pp.
281
292
.
23.
Tozzi
,
P.
,
Maertens
,
A.
,
Emery
,
J.
,
Joseph
,
S.
,
Kirsch
,
M.
, and
Avellan
,
F.
,
2017
, “
An Original Valveless Artificial Heart Providing Pulsatile Flow Tested in Mock Circulatory Loops
,”
Int. J. Artif. Organs
,
40
(
12
), pp.
683
689
.10.5301/ijao.5000634
24.
Thamsen
,
B. K.
,
2016
, “
A Two-Stage Rotary Blood Pump Design to Reduce Blood Trauma
,”
Ph.D. thesis
,
Technische Universität Berlin, Berlin, Germany
.10.14279/depositonce-5466
25.
Li
,
M.
,
Walk
,
R.
,
Roka-Moiia
,
Y.
,
Sheriff
,
J.
,
Bluestein
,
D.
,
Barth
,
E. J.
, and
Slepian
,
M. J.
,
2019
, “
Circulatory Loop Design and Components Introduce Artifacts Impacting in-Vitro Evaluation of Ventricular Assist Device Thrombogenicity: A Call for Caution
,”
Artif. Organs.
, 44(6), pp. E226–E237.10.1111/aor.13626
26.
ASTM Committee
,
2019
, “
Standard Practice for Assessment Of Hemolysis in Continuous Flow Blood Pumps
,” ASTM, West Conshohocken, PA , Report No.
ASTM F1841
.10.1520/F1841-19
27.
Zhang
,
J.
,
Gellman
,
B.
,
Koert
,
A.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2006
, “
Computational and Experimental Evaluation of the Fluid Dynamics and Hemocompatibility of the CentriMag Blood Pump
,”
Artif. Organs
,
30
(
3
), pp.
168
177
.10.1111/j.1525-1594.2006.00203.x
28.
Roka-Moiia
,
Y.
,
Li
,
M.
,
Ivich
,
A.
,
Muslmani
,
S.
,
Kern
,
K. B.
, and
Slepian
,
M. J.
,
2020
, “
Impella 5.5 Versus CentriMag: A Head-To-Head Comparison of Device Hemocompatibility
,”
Asaio J
,
66
(
10
), pp.
1142
1151
.10.1097/MAT.0000000000001283
29.
Roberts
,
N.
,
Chandrasekaran
,
U.
,
Das
,
S.
,
Qi
,
Z.
, and
Corbett
,
S.
,
2020
, “
Hemolysis Associated With Impella Heart Pump Positioning: In Vitro Hemolysis Testing and Computational Fluid Dynamics Modeling
,”
Int. J. Artif. Organs
, 43(11), pp.
710
718
.10.1177/0391398820909843
30.
Thoratec Corporation
,
2021
, “
Heartmate 3 Left Ventricular Assist System Instructions for Use
,” United States & Canada Thoratec Corporation, Pleasanton, CA, accessed Jan. 18, 2021, https://www.accessdata.fda.gov/cdrh_docs/pdf16/P160054C.pdf
31.
Abiomed
,
2021
, “
Impella 5.5 with Smart Assist
,” Abiomed, Danvers, MA, accessed Jan. 18, 2021, https://www.fda.gov/media/140766/download
32.
Hosseinipour
,
M.
,
Gupta
,
R.
,
Bonnell
,
M.
, and
Elahinia
,
M.
,
2017
, “
Rotary Mechanical Circulatory Support Systems
,”
J. Rehabilitation Assistive Technol. Eng.
,
4
, p.
205566831772599
.10.1177/2055668317725994
33.
Heatley
,
G.
,
Sood
,
P.
,
Goldstein
,
D.
,
Uriel
,
N.
,
Cleveland
,
J.
,
Middlebrook
,
D.
, and
Mehra
,
M. R.
,
2016
, “
Clinical Trial Design and Rationale of the Multicenter Study of MagLev Technology in Patients Undergoing Mechanical Circulatory Support Therapy With HeartMate 3 (MOMENTUM 3) Investigational Device Exemption Clinical Study Protocol
,”
J. Hear. Lung Transplant
,
35
(
4
), pp.
528
536
.10.1016/j.healun.2016.01.021
You do not currently have access to this content.