Abstract

Emergency medical service (EMS) providers have a higher potential exposure to infectious agents than the general public (Nguyen et al., 2020, “Risk of COVID-19 Among Frontline Healthcare Workers and the General Community: A Prospective Cohort Study,” Lancet Pub. Health, 5(9), pp. e475–e483; Brown et al., 2021, “Risk for Acquiring Coronavirus Disease Illness Among Emergency Medical Service Personnel Exposed to Aerosol-Generating Procedures,” Emer. Infect. Disease J., 27(9), p. 2340). The use of protective equipment may reduce, but does not eliminate their risk of becoming infected as a result of these exposures. Prehospital environments have a high risk of disease transmission exposing EMS providers to bioaerosols and droplets from infectious patients. Field intubation procedures may be performed causing the generation of bioaerosols, thereby increasing the exposure of EMS workers to pathogens. Additionally, ambulances have a reduced volume compared to a hospital treatment space, often without an air filtration system, and no control mechanism to reduce exposure. This study evaluated a containment plus filtration intervention for reducing aerosol concentrations in the patient module of an ambulance. Aerosol concentration measurements were taken in an unoccupied research ambulance at National Institute for Occupational Safety and Health (NIOSH) Cincinnati using a tracer aerosol and optical particle counters (OPCs). The evaluated filtration intervention was a containment pod with a high efficiency particulate air (HEPA)-filtered extraction system that was developed and tested based on its ability to contain, capture, and remove aerosols during the intubation procedure. Three conditions were tested (1) baseline (without intervention), (2) containment pod with HEPA-1, and (3) containment pod with HEPA-2. The containment pod with HEPA-filtered extraction intervention provided containment of 95% of the total generated particle concentration during aerosol generation relative to the baseline condition, followed by rapid air cleaning within the containment pod. This intervention can help reduce aerosol concentrations within ambulance patient modules while performing aerosol-generating procedures.

References

1.
Nguyen
,
L. H.
,
Drew
,
D. A.
,
Graham
M.S.
,
Joshi
,
A. D.
,
Guo
,
C. G.
,
Ma
,
W.
,
Mehta
,
R. S.
et al.,
2020
, “
Risk of COVID-19 Among Front-line Health-care Workers and the General Community: A Prospective Cohort Study
,”
Lancet Pub. Health
, 5(
9
), pp.
e475
e483
.10.1016/S2468-2667(20)30164-X
2.
Brown
,
A.
,
Schwarcz
,
L.
,
Counts
,
C.
,
Barnard
,
L.
,
Yang
,
B.
,
Emert
,
J.
,
Latimer
,
A.
, et al.,
2021
, “
Risk for Acquiring Coronavirus Disease Illness Among Emergency Medical Service Personnel Exposed to Aerosol-Generating Procedures
,”
Emer. Infect. Disease J.
,
27
(
9
), p.
2340
.10.3201/eid2709.210363
3.
Lindsley
,
W. G.
,
Blachere
,
F. M.
,
McClelland
,
T. L.
,
Neu
,
D. T.
,
Mnatsakanova
,
A.
,
Martin
,
S. B.
, Jr.
,
Mead
,
K. R.
, et al.,
2019
, “
Efficacy of an Ambulance Ventilation System in Reducing EMS Worker Exposure to Airborne Particles From a Patient Cough Aerosol Simulator
,”
J. Occup. Environ. Hyg.
,
16
(
12
), pp.
804
816
.10.1080/15459624.2019.1674858
4.
Sayed
,
M. E.
,
Kue
,
R.
,
McNeil
,
C.
, and
Dyer
,
K. S.
,
2011
, “
A Descriptive Analysis of Occupational Health Exposures in an Urban Emergency Medical Services System: 2007–2009
,”
Prehospital Emerg. Care
,
15
(
4
), pp.
506
510
.10.3109/10903127.2011.598608
5.
Gnugnoli
,
D. M.
,
S
,
A.
, and
Shafer
,
K.
,
2021
, “
StatPearls [Internet]
,”
EMS Field Intubation
,
StatPearls Publishing
,
Treasure Island, FL
.
6.
Meng
,
L.
,
Qiu
,
H.
,
Wan
,
L.
,
Ai
,
Y.
,
Xue
,
Z.
,
Guo
,
Q.
,
Deshpande
,
R.
,
Zhang
,
L.
,
Meng
,
J.
,
Tong
,
C.
,
Liu
,
H.
, and
Xiong
,
L.
,
2020
, “
Intubation and Ventilation Amid the COVID-19 Outbreak: Wuhan's Experience
,”
Anesthesiology
,
132
(
6
), pp.
1317
1332
.10.1097/ALN.0000000000003296
7.
Simpson
,
J. P.
,
Wong
,
D. N.
,
Verco
,
L.
,
Carter
,
R.
,
Dzidowski
,
M.
, and
Chan
,
P. Y.
,
2020
, “
Measurement of Airborne Particle Exposure During Simulated Tracheal Intubation Using Various Proposed Aerosol Containment Devices During the COVID-19 Pandemic
,”
Anaesthesia
,
75
(
12
), pp.
1587
1595
.10.1111/anae.15188
8.
El-Boghdadly
,
K.
,
Wong
,
D. J. N.
,
Owen
,
R.
,
Neuman
,
M. D.
,
Pocock
,
S.
,
Carlisle
,
J. B.
,
Johnstone
,
C.
, et al.,
2020
, “
Risks to Healthcare Workers Following Tracheal Intubation of Patients With COVID-19: A Prospective International Multicentre Cohort Study
,”
Anaesthesia
,
75
(
11
), pp.
1437
1447
.10.1111/anae.15170
9.
Ng
,
K.
,
Poon
,
B. H.
,
Kiat Puar
,
T. H.
,
Shan Quah
,
J. L.
,
Loh
,
W. J.
,
Wong
,
Y. J.
,
Tan
,
T. Y.
, et al.,
2020
, “
COVID-19 and the Risk to Health Care Workers: A Case Report
,”
Ann. Intern. Med.
,
172
(
11
), pp.
766
767
.10.7326/L20-0175
10.
Luo
,
M.
,
Cao
,
S.
,
Wei
,
L.
,
Tang
,
R.
,
Hong
,
S.
,
Liu
,
R.
, and
Wang
,
Y.
,
2020
, “
Precautions for Intubating Patients With COVID-19
,”
Anesthesiology
,
132
(
6
), pp.
1616
1618
.10.1097/ALN.0000000000003288
11.
Weissman
,
D. N.
,
de Perio
,
M. A.
, and
Radonovich
,
L. J.
Jr.
,
2020
, “
COVID-19 and Risks Posed to Personnel During Endotracheal Intubation
,”
JAMA
,
323
(
20
), pp.
2027
2028
.10.1001/jama.2020.6627
12.
U.S. Centers for Disease Control and Prevention
,
2020
, “
First Responders: Interim Recommendations for Emergency Medical Services (EMS) Systems and 911 Public Safety Answering Points/Emergency Communication Centers (PSAP/ECCs) in the United States During the Coronavirus Disease (COVID-19) Pandemic,” U.S. Centers for Disease Control and Prevention, Atlanta, GA, accessed May 9, 2021
, https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-for-ems.html
13.
Occupational Safety and Health Administration (OSHA),
2021, “
Healthcare Workers and Employers
,” OSHA, Washington, DC, accessed Aug. 3, 2021, https://www.osha.gov/coronavirus/control-prevention/healthcare-workers
14.
Environmental Protection Agency (EPA),
2021
, “
About List N: Disinfectants for Coronavirus (COVID-19)
,” EPA, Washington, DC, accessed Nov. 9, 2021, https://www.epa.gov/coronavirus/about-list-n-disinfectants-coronavirus-covid-19-0
15.
U.S. Centers for Disease Control and Prevention
,
2022
, “
Interim Infection Prevention and Control Recommendations for Healthcare Personnel During the Coronavirus Disease 2019 (COVID-19) Pandemic
,” U.S. Centers for Disease Control and Prevention, Atlanta, GA, accessed Oct. 24, 2022, https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-recommendations.html#anchor_1604360679150
16.
Tsuda
,
A.
,
Henry
,
F. S.
, and
Butler
,
J. P.
,
2013
, “
Particle transport and Deposition: Basic Physics of Particle Kinetics
,”
Compr. Physiol.
,
3
(
4
), pp.
1437
1471
.10.1002/cphy.c100085
17.
Brown
,
J. S.
,
Gordon
,
T.
,
Price
,
O.
, and
Asgharian
,
B.
,
2013
, “
Thoracic and Respirable Particle Definitions for Human Health Risk Assessment
,”
Part Fibre Toxicol.
,
10
, p.
12
.10.1186/1743-8977-10-12
18.
Morawska
,
L.
, and
Buonanno
,
G.
,
2021
, “
The Physics of Particle Formation and Deposition During Breathing
,”
Nat. Rev. Phys.
,
3
(
5
), pp.
300
301
.10.1038/s42254-021-00307-4
19.
Madas
,
B. G.
,
Füri
,
P.
,
Farkas
,
Á.
,
Nagy
,
A.
,
Czitrovszky
,
A.
,
Balásházy
,
I.
,
Schay
,
G. G.
, and
Horváth
,
A.
,
2020
, “
Deposition Distribution of the New Coronavirus (SARS-CoV-2) in the Human Airways Upon Exposure to Cough-Generated Droplets and Aerosol Particles
,”
Sci. Rep.
,
10
(
1
), p.
22430
.10.1038/s41598-020-79985-6
20.
Brant-Zawadzki
,
G. M.
,
Ockerse
,
P.
,
Brunson
,
J. R.
,
Smith
,
J. L.
,
McRae
,
B. R.
,
Fonnesbeck
,
A.
,
Ledyard
,
H.
,
Ruechel
,
A.
, and
Fassl
,
B. A.
,
2021
, “
An Aerosol Containment and Filtration Tent for Intubation During the COVID-19 Pandemic
,”
Surg. Innov.
,
28
(
2
), pp.
226
230
.10.1177/1553350621999976
21.
Endersby
,
R. V. W.
,
Ho
,
E. C. Y.
,
Spencer
,
A. O.
,
Goldstein
,
D. H.
, and
Schubert
,
E.
,
2020
, “
Barrier Devices for Reducing Aerosol and Droplet Transmission in COVID-19 Patients: Advantages, Disadvantages, and Alternative Solutions
,”
Anesth. Analg.
,
131
(
2
), pp.
e121
e123
.10.1213/ANE.0000000000004953
22.
Fidler
,
R. L.
,
Niedek
,
C. R.
,
Teng
,
J. J.
,
Sturgeon
,
M. E.
,
Zhang
,
Q.
,
Robinowitz
,
D. L.
, and
Hirsch
,
J.
,
2021
, “
Aerosol Retention Characteristics of Barrier Devices
,”
Anesthesiology
,
134
(
1
), pp.
61
71
.10.1097/ALN.0000000000003597
23.
Kumar
,
P.
,
Chaudhry
,
D.
,
Lalwani
,
L. K.
, and
Singh
,
P. K.
,
2020
, “
Modified Barrier Enclosure for Noninvasive Respiratory Support in COVID-19 Outbreak
,”
Indian J. Crit. Care Med.
,
24
(
9
), pp.
835
837
.10.5005/jp-journals-10071-23591
24.
Luk
,
H. N.
,
Yang
,
Y. L.
,
Huang
,
C. H.
,
Su
,
I. M.
, and
Tsai
,
P. B.
,
2021
, “
Application of Plastic Sheet Barrier and Video Intubating Stylet to Protect Tracheal Intubators During Coronavirus Disease 2019 Pandemic: A Taiwan Experience
,”
Cell Transplant
,
30
, Article No. 963689720987527.10.1177/0963689720987527
25.
Gore
,
R. K.
,
Saldana
,
C.
,
Wright
,
D. W.
, and
Klein
,
A. M.
,
2020
, “
Intubation Containment System for Improved Protection From Aerosolized Particles During Airway Management
,”
IEEE J. Transl. Eng. Health Med.
,
8
, p.
1600103
.10.1109/JTEHM.2020.2993531
26.
U.S. Food and Drug Admininstration (FDA),
2020
, “
Protective Barrier Enclosures Without Negative Pressure Used During the COVID-19 Pandemic May Increase Risk to Patients and Health Care Providers - Letter to Health Care Providers
,” FDA, Washington, DC, accessed Aug. 4, 2021, https://www.fda.gov/medical-devices/letters-health-care-providers/protective-barrier-enclosures-without-negative-pressure-used-during-covid-19-pandemic-may-increase
27.
Vivek
,
C.
,
2021
, “
Creating and Validating a Negative Pressure Hepa Filtration Tent
,” American Society of Anesthesiologists, Schaumburg, IL.
28.
Gupta
,
V.
,
Sahani
,
A.
,
Mohan
,
B.
, and
Wander
,
G. S.
,
2020
, “
Negative Pressure Aerosol Containment Box: An Innovation to Reduce COVID-19 Infection Risk in Healthcare Workers
,”
J. Anaesthesiol. Clin. Pharmacol.
,
36
(
Suppl 1
), p.
S144
.10.4103/joacp.JOACP_217_20
29.
Phu
,
H. T.
,
Park
,
Y.
,
Andrews
,
A. J.
,
Marabella
,
I.
,
Abraham
,
A.
,
Mimmack
,
R.
,
Olson
,
B.
,
A.
,
Chaika
,
J.
,
Floersch
,
E.
,
Remskar
,
M.
,
Hume
,
J. R.
,
Fischer
,
G. A.
,
Belani
,
K.
, and
Hogan
,
C. J.
, Jr.
,
2020
, “
Design and Evaluation of a Portable Negative Pressure Hood With HEPA Filtration to Protect Health Care Workers Treating Patients With Transmissible Respiratory Infections
,”
Am. J. Infect. Control
,
48
(
10
), pp.
1237
1243
.10.1016/j.ajic.2020.06.203
30.
Seger
,
C. D.
,
Wang
,
L.
,
Dong
,
X.
,
Tebon
,
P.
,
Kwon
,
S.
,
Liew
,
E. C.
,
Marijic
,
J.
,
Umar
,
S.
, and
Hoftman
,
N. N.
,
2020
, “
A Novel Negative Pressure Isolation Device for Aerosol Transmissible COVID-19
,”
Anesth. Analg.
,
131
(
3
), pp.
664
668
.10.1213/ANE.0000000000005052
31.
Kim
,
S. C.
,
Kong
,
S. Y.
,
Park
,
G. J.
,
Lee
,
J. H.
,
Lee
,
J. K.
,
Lee
,
M. S.
, and
Han
,
H. S.
,
2021
, “
Effectiveness of Negative Pressure Isolation Stretcher and Rooms for SARS-CoV-2 Nosocomial Infection Control and Maintenance of South Korean Emergency Department Capacity
,”
Am. J. Emerg. Med.
,
45
, pp.
483
489
.10.1016/j.ajem.2020.09.081
32.
Chen
,
Y.
,
Yang
,
Y.
,
Peng
,
W.
, and
Wang
,
H.
,
2021
, “
Influence and Analysis of Ambulance on the Containment of COVID-19 in China
,”
Saf. Sci.
,
139
, pp.
105160
105160
.10.1016/j.ssci.2021.105160
33.
U.S. Centers for Disease Control and Prevention
,
2016
, “
Guidance for Developing a Plan for Interfacility Transport of Persons Under Investigation or Confirmed Patients With Ebola Virus Disease in the United States
,” U.S. Centers for Disease Control and Prevention, Washington, DC, accessed Oct. 19, 2021, https://www.cdc.gov/vhf/ebola/clinicians/emergency-services/interfacility-transport.html
34.
Feldman
,
O.
,
Samuel
,
N.
,
Kvatinsky
,
N.
,
Idelman
,
R.
,
Diamand
,
R.
, and
Shavit
,
I.
,
2021
, “
Endotracheal Intubation of COVID-19 Patients by Paramedics Using a Box Barrier: A Randomized Crossover Manikin Study
,”
PLoS One
,
16
(
3
), p.
e0248383
.10.1371/journal.pone.0248383
35.
Johnson
,
D. L.
,
Lynch
,
R. A.
, and
Mead
,
K. R.
,
2009
, “
Containment Effectiveness of Expedient Patient Isolation Units
,”
Am. J. Infect. Control
,
37
(
2
), pp.
94
100
.10.1016/j.ajic.2008.05.011
36.
Maloney
,
L. M.
,
Yang
,
A. H.
,
Princi
,
R. A.
,
Eichert
,
A. J.
,
Hébert
,
D. R.
,
Kupec
,
T. V.
,
Mertz
,
A. E.
,
Vasyltsiv
,
R.
,
Vijaya Kumar
,
T. M.
,
Walker
,
G. J.
,
Peralta
,
E. J.
,
Hoffman
,
J. L.
,
Yin
,
W.
, and
Page
,
C. R.
,
2020
, “
A COVID-19 Airway Management Innovation With Pragmatic Efficacy Evaluation: The Patient Particle Containment Chamber
,”
Ann. Biomed. Eng.
,
48
(
10
), pp.
2371
2376
.10.1007/s10439-020-02599-6
37.
Mead
,
K.
, and
Johnson
,
D. L.
,
2004
, “
An Evaluation of Portable High-Efficiency Particulate Air Filtration for Expedient Patient Isolation in Epidemic and Emergency Response
,”
Ann. Emerg. Med.
,
44
(
6
), pp.
635
645
.10.1016/j.annemergmed.2004.07.451
38.
Mead
,
K. R.
,
Feng
,
A.
,
Hammond
,
D.
, and
Shulman
,
S.
,
2012
, “
Expedient Methods for Surge Airborne Isolation Within Healthcare Settings During Response to a Natural or Manmade Epidemic
,”
National Institute for Occupational Safety and Health (NIOSH)
, Atlanta, GA, Report No.
301-05f
.https://stacks.cdc.gov/view/cdc/37781
39.
U.S. Centers for Disease Control and Prevention
,
2021
, “
SARS-CoV-2 Transmission
,” U.S. Centers for Disease Control and Prevention, Washington, DC, accessed Aug. 3, 2021, https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html
40.
Jayaweera
,
M.
,
Perera
,
H.
,
Gunawardana
,
B.
, and
Manatunge
,
J.
,
2020
, “
Transmission of COVID-19 Virus by Droplets and Aerosols: A Critical Review on the Unresolved Dichotomy
,”
Environ. Res.
,
188
, p.
109819
.10.1016/j.envres.2020.109819
41.
DURAG GROUP
,
2021
, “
Model 11-D the Dust Decoder
,” DURAG GROUP, Hamburg, Germany, accessed Dec. 1, 2022, https://www.grimm-aerosol.com/products-en/dust-monitors/the-dust-decoder/11-d/
42.
Estill
,
C.
,
1999
, “
Chapter 9: Ergonomics
,”
AIHA Engineering Reference Manual 2nd ed.
, American Industrial Hygiene Association Engineering Committee, Fairfax, VA.
You do not currently have access to this content.