Abstract

Functional electrical stimulation (FES) is often used in poststroke gait rehabilitation to decrease foot drop and increase forward propulsion. However, not all stroke survivors experience clinically meaningful improvements in gait function following training with FES. The purpose of this work was to develop and validate a novel adaptive FES (AFES) system to improve dorsiflexor (DF) and plantarflexor (PF) stimulation timing and iteratively adjust the stimulation amplitude at each stride based on measured gait biomechanics. Stimulation timing was determined by a series of bilateral footswitches. Stimulation amplitude was calculated based on measured dorsiflexion angle and peak propulsive force, where increased foot drop and decreased paretic propulsion resulted in increased stimulation amplitudes. Ten individuals with chronic poststroke hemiparesis walked on an adaptive treadmill with adaptive FES for three 2-min trials. Stimulation was delivered at the correct time to the dorsiflexor muscles during 95% of strides while stimulation was delivered to the plantarflexor muscles at the correct time during 84% of strides. Stimulation amplitudes were correctly calculated and delivered for all except two strides out of nearly 3000. The adaptive FES system responds to real-time gait biomechanics as intended, and further individualization to subject-specific impairments and rehabilitation goals may lead to improved rehabilitation outcomes.

References

1.
Benjamin
,
E. J.
,
Muntner
,
P.
,
Alonso
,
A.
,
Bittencourt
,
M. S.
,
Callaway
,
C. W.
,
Carson
,
A. P.
,
Chamberlain
, et al.,
2019
, “
Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association
,”
Circulation
,
139
(
10
), pp.
e56
e528
.10.1161/CIR.0000000000000659
2.
Li
,
S.
,
Francisco
,
G. E.
, and
Zhou
,
P.
,
2018
, “
Post-Stroke Hemiplegic Gait: New Perspective and Insights
,”
Front. Physiol.
,
9
, pp.
1
8
.10.3389/fphys.2018.01021
3.
Dickstein
,
R.
,
2008
, “
Review Article: Rehabilitation of Gait Speed After Stroke: A Critical Review of Intervention Approaches
,”
Neurorehabil. Neural Repair
,
22
(
6
), pp.
649
660
.10.1177/1545968308315997
4.
Roelker
,
S. A.
,
Bowden
,
M. G.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
,
2018
, “
Paretic Propulsion as a Measure of Walking Performance and Functional Motor Recovery Post-Stroke: A Review
,”
Gait Posture
,
68
, pp.
6
14
.10.1016/j.gaitpost.2018.10.027
5.
Bohannon
,
R. W.
,
Morton
,
M. G.
, and
Wikholm
,
J. B.
,
1991
, “
Importance of Four Variables of Walking to Patients With Stroke
,”
Int. J. Rehabil. Res.
,
14
(
3
), pp.
246
250
.10.1097/00004356-199109000-00010
6.
Lynch
,
C. L.
, and
Popovic
,
M. R.
,
2008
, “
Functional Electrical Stimulation
,”
IEEE Control Syst.
,
28
(
2
), pp.
40
50
.10.1109/MCS.2007.914689
7.
Langhorne
,
P.
,
Coupar
,
F.
, and
Pollock
,
A.
,
2009
, “
Motor Recovery After Stroke: A Systematic Review
,”
Lancet Neurol.
,
8
(
8
), pp.
741
754
.10.1016/S1474-4422(09)70150-4
8.
Kesar
,
T. M.
,
Perumal
,
R.
,
Reisman
,
D. S.
,
Jancosko
,
A.
,
Rudolph
,
K. S.
,
Higginson
,
J. S.
, and
Binder-Macleod
,
S. A.
,
2009
, “
Functional Electrical Stimulation of Ankle Plantarflexor and Dorsiflexor Muscles: Effects on Poststroke Gait
,”
Stroke
,
40
(
12
), pp.
3821
3827
.10.1161/STROKEAHA.109.560375
9.
Bowden
,
M. G.
,
Balasubramanian
,
C. K.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2006
, “
Anterior-Posterior Ground Reaction Forces as a Measure of Paretic Leg Contribution in Hemiparetic Walking
,”
Stroke
,
37
(
3
), pp.
872
876
.10.1161/01.STR.0000204063.75779.8d
10.
Ray
,
N. T.
,
Reisman
,
D. S.
, and
Higginson
,
J. S.
,
2020
, “
Walking Speed Changes in Response to User-Driven Treadmill Control After Stroke
,”
J. Biomech.
,
101
, p.
109643
.10.1016/j.jbiomech.2020.109643
11.
Awad
,
L. N.
,
Reisman
,
D. S.
,
Kesar
,
T. M.
, and
Binder-Macleod
,
S. A.
,
2014
, “
Targeting Paretic Propulsion to Improve Poststroke Walking Function: A Preliminary Study
,”
Arch. Phys. Med. Rehabil.
,
95
(
5
), pp.
840
848
.10.1016/j.apmr.2013.12.012
12.
Hakansson
,
N. A.
,
Kesar
,
T. M.
,
Reisman
,
D. S.
,
Binder-Macleod
,
S. A.
, and
Higginson
,
J. S.
,
2011
, “
Effects of Fast Functional Electrical Stimulation Gait Training on Mechanical Recovery in Poststroke Gait
,”
Artif. Organs
,
35
(
3
), pp.
217
220
.10.1111/j.1525-1594.2011.01215.x
13.
Kesar
,
T. M.
,
Perumal
,
R.
,
Jancosko
,
A.
,
Reisman
,
D. S.
,
Rudolph
,
K. S.
,
Higginson
,
J. S.
, and
Binder-Macleod
,
S. A.
,
2010
, “
Novel Patterns of Functional Electrical Stimulation Have an Immediate Effect on Dorsiflexor Muscle Function During Gait for People Poststroke
,”
Phys. Ther.
,
90
(
1
), pp.
55
66
.10.2522/ptj.20090140
14.
Skelly
,
M. M.
, and
Chizeck
,
H. J.
,
2001
, “
Real-Time Gait Event Detection for Paraplegic FES Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
9
(
1
), pp.
59
68
.10.1109/7333.918277
15.
Lynch
,
G. S.
, and
Williams
,
D. A.
,
1994
, “
The Effect of Exercise on the Contractile Properties of Single Skinned Fast‐ and Slow‐Twitch Skeletal Muscle Fibres From the Adult Rat
,”
Acta Physiol. Scand.
,
150
(
2
), pp.
141
150
.10.1111/j.1748-1716.1994.tb09671.x
16.
Jiang
,
C.
,
Zheng
,
M.
,
Li
,
Y.
,
Wang
,
X.
,
Li
,
L.
, and
Song
,
R.
,
2020
, “
Iterative Adjustment of Stimulation Timing and Intensity During FES-Assisted Treadmill Walking for Patients After Stroke
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
6
), pp.
1292
1298
.10.1109/TNSRE.2020.2986295
17.
Seel
,
T.
,
Laidig
,
D.
,
Valtin
,
M.
,
Werner
,
C.
,
Raisch
,
J. J.
, and
Schauer
,
T.
,
2014
, “
Feedback Control of Foot Eversion in the Adaptive Peroneal Stimulator
,”
2014 22nd Mediterranean Conference on Control and Automation
, Palermo, Italy, June 16–19, pp.
1482
1487
.10.1109/MED.2014.6961585
18.
Chen
,
W. L.
,
Chen
,
S. C.
,
Chen
,
C. C.
,
Chou
,
C. H.
,
Shih
,
Y. Y.
,
Chen
,
Y. L.
, and
Kuo
,
T. S.
,
2010
, “
Patient-Driven Loop Control for Ambulation Function Restoration in a Non-Invasive Functional Electrical Stimulation System
,”
Disability Rehabil.
,
32
(
1
), pp.
65
71
.10.3109/09638280903026564
19.
Seel
,
T.
,
Werner
,
C.
, and
Schauer
,
T.
,
2016
, “
The Adaptive Drop Foot Stimulator - Multivariable Learning Control of Foot Pitch and Roll Motion in Paretic Gait
,”
Med. Eng. Phys.
,
38
(
11
), pp.
1205
1213
.10.1016/j.medengphy.2016.06.009
20.
Chen
,
G.
,
Shen
,
Z.
,
Zhuang
,
Y.
,
Wang
,
X.
, and
Song
,
R.
,
2018a
, “
Intensity- and Duration-Adaptive Functional Electrical Stimulation Using Fuzzy Logic Control and a Linear Model for Dropfoot Correction
,”
Front. Neurol.
,
9
, p.
165
.10.3389/fneur.2018.00165
21.
Chen
,
Y.-L.
,
Li
,
Y.-C.
,
Kuo
,
T.-S.
, and
Lai
,
J.-S.
,
2001
, “
The Development of a Closed-Loop Controlled Functional Electrical Stimulation (FES) in Gait Training
,”
J. Med. Eng. Technol.
,
25
(
2
), pp.
41
48
.10.1080/03091900110043612
22.
Ray
,
N. T.
,
Reisman
,
D. S.
, and
Higginson
,
J. S.
,
2021
, “
Combined User-Driven Treadmill Control and Functional Electrical Stimulation Increases Walking Speeds Poststroke
,”
J. Biomech.
,
124
, p.
110480
.10.1016/j.jbiomech.2021.110480
23.
Kerrigan
,
D. C.
,
Todd
,
M. K.
, and
Croce
,
U. D.
,
1998
, “
Gender Differences in Joint Biomechanics During Walking Normative Study in Young Adults
,”
Am. J. Phys. Med. Rehabil.
,
77
(
1
), pp.
2
7
.10.1097/00002060-199801000-00002
24.
Balaban
,
B.
, and
Tok
,
F.
,
2014
, “
Gait Disturbances in Patients With Stroke
,”
Phys. Med. Rehabil.
,
6
(
7
), pp.
635
642
.10.1016/j.pmrj.2013.12.017
25.
Burdett
,
R.
,
Borello-France
,
D.
,
Blatchly
,
C.
, and
Potter
,
C.
,
2016
, “
Gait Comparison of Subjects With Hemiplegia Walking Unbraced, With Ankle-Foot Orthosis, and With Air-Stirrup® Brace
,”
Phys. Ther.
,
68
(
8
), pp.
1197
1203
.https://pubmed.ncbi.nlm.nih.gov/3399515/
26.
Olney
,
S. J.
, and
Richards
,
C.
,
1996
, “
Hemiparetic Gait Following Stroke. Part I: Characteristics
,”
Gait Posture
,
4
(
2
), pp.
136
148
.10.1016/0966-6362(96)01063-6
27.
Lauziere
,
S.
,
Betschart
,
M.
,
Aissaoui
,
R.
, and
Nadeau
,
S.
,
2014
, “
Understanding Spatial and Temporal Gait Asymmetries in Individuals Post Stroke
,”
Int. J. Phys. Med. Rehabil.
,
2
(
3
), p.
201
.https://www.researchgate.net/publication/268802164_UNDERSTANDING_SPATIAL_AND_TEMPORAL_GAIT_ASYMMETRIES_IN_INDIVIDUALS_POST_STROKE
28.
Awad
,
L. N.
,
Hsiao
,
H.
, and
Binder-Macleod
,
S. A.
,
2020
, “
Central Drive to the Paretic Ankle Plantarflexors Affects the Relationship Between Propulsion and Walking Speed After Stroke
,”
J. Neurol. Phys. Ther.
,
44
(
1
), pp.
42
48
.10.1097/NPT.0000000000000299
29.
Herzog
,
W.
,
Nigg
,
B. M.
,
Read
,
L. J.
, and
Olsson
,
E.
,
1989
, “
Asymmetries in Ground Reaction Force Patterns in Normal Human Gait
,”
Med. Sci. Sports Exercise
,
21
(
1
), pp.
110
114
.10.1249/00005768-198902000-00020
30.
Ray
,
N. T.
,
Knarr
,
B. A.
, and
Higginson
,
J. S.
,
2018
, “
Walking Speed Changes in Response to Novel User-Driven Treadmill Control
,”
J. Biomech.
,
78
, pp.
143
149
.10.1016/j.jbiomech.2018.07.035
31.
Zeni
,
J. A.
,
Richards
,
J. G.
, and
Higginson
,
J. S.
,
2008
, “
Two Simple Methods for Determining Gait Events During Treadmill and Overground Walking Using Kinematic Data
,”
Gait Posture
,
27
(
4
), pp.
710
714
.10.1016/j.gaitpost.2007.07.007
32.
Burke
,
E.
,
Dodakian
,
L.
,
See
,
J.
,
McKenzie
,
A.
,
Riley
,
J. D.
,
Le
,
V.
, and
Cramer
,
S. C.
,
2014
, “
A Multimodal Approach to Understanding Motor Impairment and Disability After Stroke
,”
J. Neurol.
,
261
(
6
), pp.
1178
1186
.10.1007/s00415-014-7341-8
33.
Banks
,
C. L.
,
Huang
,
H. J.
,
Little
,
V. L.
, and
Patten
,
C.
,
2017
, “
Electromyography Exposes Heterogeneity in Muscle Co-Contraction Following Stroke
,”
Front. Neurol.
,
8
, p.
292047
.10.3389/fneur.2017.00699
34.
Roerdink
,
M.
, and
Beek
,
P. J.
,
2011
, “
Understanding Inconsistent Step-Length Asymmetries Across Hemiplegic Stroke Patients: Impairments and Compensatory Gait
,”
Neurorehabil. Neural Repair
,
25
(
3
), pp.
253
258
.10.1177/1545968310380687
35.
Behboodi
,
A.
,
Zahradka
,
N.
,
Alesi
,
J.
,
Wright
,
H.
, and
Lee
,
S. C. K.
,
2019
, “
Use of a Novel Functional Electrical Stimulation Gait Training System in 2 Adolescents With Cerebral Palsy: A Case Series Exploring Neurotherapeutic Changes
,”
Phys. Ther.
,
99
(
6
), pp.
739
747
.10.1093/ptj/pzz040
36.
Chen
,
G.
,
Ma
,
L.
,
Song
,
R.
,
Li
,
L.
,
Wang
,
X.
, and
Tong
,
K.
,
2018b
, “
Speed-Adaptive Control of Functional Electrical Stimulation for Dropfoot Correction
,”
J. NeuroEng. Rehabil.
,
15
(
1
), pp.
1
11
.10.1186/s12984-018-0448-x
37.
Hollman
,
J. H.
,
McDade
,
E. M.
, and
Petersen
,
R. C.
,
2011
, “
Normative Spatiotemporal Gait Parameters in Older Adults
,”
Gait Posture
,
34
(
1
), pp.
111
118
.10.1016/j.gaitpost.2011.03.024
38.
Parthasarathy
,
A.
,
V.n
,
M.
, and
Talasila
,
V.
,
2020
, “
Forecasting a Gait Cycle Parameter Region to Enable Optimal FES Triggering
,”
IFAC-PapersOnLine
,
53
(
1
), pp.
232
239
.10.1016/j.ifacol.2020.06.040
39.
Dhawale
,
A. K.
,
Smith
,
M. A.
, and
Ölveczky
,
B. P.
,
2017
, “
The Role of Variability in Motor Learning
,”
Annu. Rev. Neurosci.
,
40
(
1
), pp.
479
498
.10.1146/annurev-neuro-072116-031548
40.
Brach
,
J. S.
,
Berlin
,
J. E.
,
VanSwearingen
,
J. M.
,
Newman
,
A. B.
, and
Studenski
,
S. A.
,
2005
, “
Too Much or Too Little Step Width Variability is Associated With a Fall History in Older Persons Who Walk at or Near Normal Gait Speed
,”
J. NeuroEng. Rehabil.
,
2
(
1
), pp.
1
8
.10.1186/1743-0003-2-21
41.
Palmer
,
J. A.
,
Hsiao
,
H.
,
Wright
,
T.
, and
Binder-Macleod
,
S. A.
,
2017
, “
Single Session of Functional Electrical Stimulation-Assisted Walking Produces Corticomotor Symmetry Changes Related to Changes in Poststroke Walking Mechanics
,”
Phys. Ther.
,
97
(
5
), pp.
550
560
.10.1093/ptj/pzx008
42.
Wang
,
J.
,
Qiao
,
L.
,
Yu
,
L.
,
Wang
,
Y.
,
Taiar
,
R.
,
Zhang
,
Y.
, and
Fu
,
W.
,
2021
, “
Effect of Customized Insoles on Gait in Post-Stroke Hemiparetic Individuals: A Randomized Controlled Trial
,”
Biology
,
10
(
11
), p.
1187
.10.3390/biology10111187
43.
Ding
,
Y.
,
Kim
,
M.
,
Kuindersma
,
S.
, and
Walsh
,
C. J.
,
2018
, “
Human-in-the-Loop Optimization of Hip Assistance With a Soft Exosuit During Walking
,”
Sci. Rob.
,
3
(
15
), p.
eaar5438
.10.1126/scirobotics.aar5438
44.
Zhang
,
J.
,
Fiers
,
P.
,
Witte
,
K. A.
,
Jackson
,
R. W.
,
Poggensee
,
K. L.
,
Atkeson
,
C. G.
, and
Collins
,
S. H.
,
2017
, “
Human-in-the-Loop Optimization of Exoskeleton Assistance During Walking
,”
Science
,
356
(
6344
), pp.
1280
1284
.10.1126/science.aal5054
45.
Awad
,
L. N.
,
Lewek
,
M. D.
,
Kesar
,
T. M.
,
Franz
,
J. R.
, and
Bowden
,
M. G.
,
2020
, “
These Legs Were Made for Propulsion: Advancing the Diagnosis and Treatment of Post-Stroke Propulsion Deficits
,”
J. NeuroEng. Rehabil.
,
17
(
1
), pp.
1
16
.10.1186/s12984-020-00747-6
46.
Hsiao
,
H.
,
Zabielski
,
T. M.
,
Palmer
,
J. A.
,
Higginson
,
J. S.
, and
Binder-Macleod
,
S. A.
,
2016
, “
Evaluation of Measurements of Propulsion Used to Reflect Changes in Walking Speed in Individuals Poststroke
,”
J. Biomech.
,
49
(
16
), pp.
4107
4112
.10.1016/j.jbiomech.2016.10.003
47.
Den Otter
,
A. R.
,
Geurts
,
A. C. H.
,
Mulder
,
T.
, and
Duysens
,
J.
,
2006
, “
Gait Recovery is Not Associated With Changes in the Temporal Patterning of Muscle Activity During Treadmill Walking in Patients With Post-Stroke Hemiparesis
,”
Clin. Neurophysiol.
,
117
(
1
), pp.
4
15
.10.1016/j.clinph.2005.08.014
48.
Rosquist
,
P. G.
,
Collins
,
G.
,
Merrell
,
A. J.
,
Tuttle
,
N. J.
,
Tracy
,
J. B.
,
Bird
,
E. T.
,
Seeley
,
M. K.
,
Fullwood
,
D. T.
,
Christensen
,
W. F.
, and
Bowden
,
A. E.
,
2017
, “
Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking
,”
Ann. Biomed. Eng.
,
45
(
9
), pp.
2122
2134
.10.1007/s10439-017-1852-2
49.
Miyazaki
,
T.
,
Kawada
,
M.
,
Nakai
,
Y.
,
Kiyama
,
R.
, and
Yone
,
K.
,
2019
, “
Validity of Measurement for Trailing Limb Angle and Propulsion Force During Gait Using a Magnetic Inertial Measurement Unit
,”
BioMed Res. Int.
,
2019
, pp.
1
8
.10.1155/2019/8123467
You do not currently have access to this content.