Abstract

Bowel resection surgery, also known as colectomy, is a primary therapeutic intervention where a neoplastic or cancerous segment of the bowel is removed and an anastomosis constructed to reestablish intestinal continuity. Several techniques can be used to create the anastomosis, including mechanical staplers or manual sutures. A potentially life-threatening complication in colon anastomosis is dehiscence and leakage. Various contributing factors can hinder the formation of anastomosis, including technical failure (human error, staple malfunction), inflammation caused by foreign body response (sutures and staples), collagenolytic bacteria, and patient comorbidities (chemotherapy, old age, and obesity). Here, we report a three-dimensional (3D)-printed compression ring with electrical stimulation (ES) functionality to improve wound healing and anastomotic closure. The device consists of a one-way locking mechanism for initial deployment, an elastic band tightening mechanism to secure seal as tissue heals, and electrodes for electrical stimulation to enhance wound healing. The compression ring was assembled with 83.4±3.9 N of force and delivers 147.5±8.8 kPa of pressure to tissue, effectively restricting blood flow to the clamped tissue. This helps to create the anastomosis between remaining tissue on either side. Our design facilitates manual assembly without necessitating an additional delivery device. Electrical impedance analysis confirmed adequate tissue–electrode contact. We tested this device with ex vivo ovine intestinal tissue and confirmed that the compression ring was able to withstand up to 2.0±0.4 kPa intraluminal pressure immediately following installation. By combining mechanical strength and electrical stimulation, this device could potentially improve wound healing, anastomotic closure, and minimize the risk of leaks.

References

1.
Murrell
,
Z. A.
, and
Stamos
,
M. J.
,
2006
, “
Reoperation for Anastomotic Failure
,”
Clin. Colon Rectal Surg.
,
19
(
4
), pp.
213
216
.10.1055/s-2006-956442
2.
Kirchhoff
,
P.
,
Clavien
,
P. A.
, and
Hahnloser
,
D.
,
2010
, “
Complications in Colorectal Surgery: Risk Factors and Preventive Strategies
,”
Patient Saf. Surg.
,
4
(
1
), p.
5
(in English).10.1186/1754-9493-4-5
3.
Vilhjalmsson
,
D.
,
Olofsson
,
P.
,
Syk
,
I.
,
Thorlacius
,
H.
, and
Grönberg
,
A.
,
2015
, “
The Compression Anastomotic Ring-Locking Procedure: A Novel Technique for Creating a Sutureless Colonic Anastomosis
,”
Eur. Surg. Res.
,
54
(
3–4
), pp.
139
147
(in English).10.1159/000368354
4.
Guyton
,
K. L.
,
Levine
,
Z. C.
,
Lowry
,
A. C.
,
Lambert
,
L.
,
Gribovskaja-Rupp
,
I.
,
Hyman
,
N.
,
Zaborina
,
O.
, and
Alverdy
,
J.
,
2019
, “
Identification of Collagenolytic Bacteria in Human Samples: Screening Methods and Clinical Implications for Resolving and Preventing Anastomotic Leaks and Wound Complications
,”
Dis. Colon Rectum
,
62
(
8
), pp.
972
979
(in English).10.1097/DCR.0000000000001417
5.
Ho
,
Y. H.
, and
Ashour
,
M. A.
,
2010
, “
Techniques for Colorectal Anastomosis
,”
World J. Gastroenterol.
,
16
(
13
), pp.
1610
1621
(in English).10.3748/wjg.v16.i13.1610
6.
Oliveira
,
A.
,
Faria
,
S.
,
Gonçalves
,
N.
,
Martins
,
A.
, and
Leão
,
P.
,
2023
, “
Surgical Approaches to Colonic and Rectal Anastomosis: Systematic Review and Meta-Analysis
,”
Int. J. Colorectal Dis.
,
38
(
1
), p.
52
(in English).10.1007/s00384-023-04328-6
7.
Rajendran
,
S. B.
,
Challen
,
K.
,
Wright
,
K. L.
, and
Hardy
,
J. G.
,
2021
, “
Electrical Stimulation to Enhance Wound Healing
,”
J. Funct. Biomater.
,
12
(
2
), p.
40
(in English).10.3390/jfb12020040
8.
Hunckler
,
J.
, and
de Mel
,
A.
,
2017
, “
A Current Affair: Electrotherapy in Wound Healing
,”
J. Multidiscip. Healthcare
,
10
, pp.
179
194
(in English).10.2147/JMDH.S127207
9.
Schneider
,
K. H.
,
Oberoi
,
G.
,
Unger
,
E.
,
Janjic
,
K.
,
Rohringer
,
S.
,
Heber
,
S.
,
Agis
,
H.
, et al.,
2023
, “
Medical 3D Printing With Polyjet Technology: Effect of Material Type and Printing Orientation on Printability, Surface Structure and Cytotoxicity
,”
3D Print. Med.
,
9
(
1
), p.
27
(in English).10.1186/s41205-023-00190-y
10.
Bayer MaterialScience
, 2024, “Snap-Fit Joints for Plastics—A Design Guide,”
Bayer Material Science
, Pittsburgh, PA, accessed June 6, 2024, https://fab.cba.mit.edu/classes/S62.12/people/vernelle.noel/Plastic_Snap_fit_design.pdf
11.
Zhao
,
G.
,
Ma
,
J.
,
Yan
,
X.
,
Li
,
J.
,
Ma
,
F.
,
Wang
,
H.
,
Liu
,
Y.
, and
Lv
,
Y.
,
2019
, “
Optimized Force Range of Magnetic Compression Anastomosis in Dog Intestinal Tissue
,”
J. Pediatr. Surg.
,
54
(
10
), pp.
2166
2171
(in English).10.1016/j.jpedsurg.2019.03.005
12.
Yin
,
L.
,
Zhu
,
C.
,
Xu
,
J.
,
Zhao
,
H.
,
Qiu
,
J.
,
Wang
,
H.
, and
Liu
,
K.
,
2022
, “
Dynamic Impedance Analysis of Intestinal Anastomosis During High-Frequency Electric Field Welding Process
,”
Sensors (Basel)
,
22
(
11
), p.
4101
(in English).10.3390/s22114101
13.
Crafa
,
F.
,
Striano
,
A.
,
Esposito
,
F.
,
Rossetti
,
A. R. R.
,
Baiamonte
,
M.
,
Gianfreda
,
V.
, and
Longo
,
A.
,
2020
, “
The ‘Reverse Air-Leak Test’: A New Technique for the Assessment of Low Colorectal Anastomosis
,”
Ann. Coloproctol.
,
38
(
1
), pp.
20
27
(in English).10.3393/ac.2020.09.21.1
14.
Kaidar-Person
,
O.
,
Rosenthal
,
R. J.
,
Wexner
,
S. D.
,
Szomstein
,
S.
, and
Person
,
B.
,
2008
, “
Compression Anastomosis: History and Clinical Considerations
,”
Am. J. Surg.
,
195
(
6
), pp.
818
826
(in English).10.1016/j.amjsurg.2007.10.006
15.
Jiborn
,
H.
,
Ahonen
,
J.
, and
Zederfeldt
,
B.
,
1978
, “
Healing of Experimental Colonic Anastomoses: I. Bursting Strength of the Colon After Left Colon Resection and Anastomosis
,”
Am. J. Surg.
,
136
(
5
), pp.
587
594
.10.1016/0002-9610(78)90315-X
16.
Ragheb
,
T.
, and
Geddes
,
L. A.
,
1991
, “
The Polarization Impedance of Common Electrode Metals Operated at Low Current Density
,”
Ann. Biomed. Eng.
,
19
(
2
), pp.
151
163
(in English).10.1007/BF02368466
17.
Dean
,
D. A.
,
Ramanathan
,
T.
,
Machado
,
D.
, and
Sundararajan
,
R.
,
2008
, “
Electrical Impedance Spectroscopy Study of Biological Tissues
,”
J. Electrostat.
,
66
(
3–4
), pp.
165
177
(in English).10.1016/j.elstat.2007.11.005
18.
Dos Santos-Silva
,
M. A.
,
Trajano
,
E. T.
,
Schanuel
,
F. S.
, and
Monte-Alto-Costa
,
A.
,
2017
, “
Heat Delays Skin Wound Healing in Mice
,”
Exp. Biol. Med. (Maywood)
,
242
(
3
), pp.
258
266
(in English).10.1177/1535370216675066
19.
Yachia
,
D.
, and
Erlich
,
N.
,
1995
, “
Bio-Fragmentable Anastomosis Ring in Urological Surgery Involving the Gastrointestinal Tract: Early Experience and a Historical Review of Mechanical Intestinal Anastomosis
,”
J. Urol.
,
153
(
5
), pp.
1426
1428
(in English).10.1016/S0022-5347(01)67419-6
20.
Iizuka
,
M.
, and
Konno
,
S.
,
2011
, “
Wound Healing of Intestinal Epithelial Cells
,”
World J. Gastroenterol.
,
17
(
17
), pp.
2161
2171
(in English).10.3748/wjg.v17.i17.2161
You do not currently have access to this content.