Abstract

The complex deformation of a peripheral arterial stent during limb movements is the main reason for its fatigue fracture. The aim of this study is to explore the impact of complex loads on the fatigue behavior and life of lower limb arterial stents. Specifically, the finite element simulation was adopted to compare and analyze the fatigue performance of three stents under five superimposed loads. Besides, the life and the fatigue crack growth life of these stents were predicted. It demonstrated that the bending load superimposed on other loads exerted a significant impact on the fatigue performance of these stents. The “spiral” structure design of the stent helped to improve the fatigue durability under complex deformations. Moreover, the prediction method for fatigue crack growth life is relatively conservative, which accounted for approximately 65–97% of the full life. The work provides important references for the fracture assessment and the optimization design of structure of stents.

References

1.
He
,
R.
,
Zhao
,
L.
,
Silberschmidt
,
V. V.
,
Feng
,
J.
, and
Serracino-Inglott
,
F.
,
2022
, “
Personalised Nitinol Stent for Focal Plaques: Design and Evaluation
,”
J. Biomech.
,
130
, p.
110873
.10.1016/j.jbiomech.2021.110873
2.
Bernini
,
M.
,
Colombo
,
M.
,
Dunlop
,
C.
,
Hellmuth
,
R.
,
Chiastra
,
C.
,
Ronan
,
W.
, and
Vaughan
,
T. J.
,
2022
, “
Oversizing of Self-Expanding Nitinol Vascular stents—A Biomechanical Investigation in the Superficial Femoral Artery
,”
J. Mech. Behav. Biomed. Mater.
,
132
, p.
105259
.10.1016/j.jmbbm.2022.105259
3.
El Khoury
,
R.
,
Nikanorov
,
A.
,
McCarroll
,
E.
,
LeClerc
,
G.
,
Guy
,
L. G.
,
Laflamme
,
M.
,
Mailloux
,
A.
, and
Schwartz
,
L. B.
,
2019
, “
An Animal Model of Human Peripheral Arterial Bending and Deformation
,”
J. Surg. Res.
,
241
, pp.
240
246
.10.1016/j.jss.2019.04.003
4.
Ko
,
T.
,
Higashitani
,
M.
,
Uemura
,
Y.
,
Utsunomiya
,
M.
,
Yamaguchi
,
T.
,
Matsui
,
A.
,
Ozaki
,
S.
, et al.,
2020
, “
Clinical Outcome and Diverse Risk Factors for Different Therapeutic Target Locations of Peripheral Artery Disease
,”
J. Atheroscler. Thromb.
,
27
(
8
), pp.
769
779
.10.5551/jat.52647
5.
Kim
,
H. T.
,
Cho
,
J. H.
,
Lee
,
J. H.
, and
Kim
,
U.
,
2020
, “
Early Supera Stent Fracture in the Femoropopliteal Artery
,”
Cardiovasc. J. Afr.
,
31
(
3
), pp.
e1
e3
.10.5830/CVJA-2020-004
6.
Weiß
,
S.
,
Szymczak
,
H.
, and
Meißner
,
A.
,
2009
, “
Fatigue and Endurance of Coronary Stents
,”
Materialwiss. Werkstofftech.
,
40
(
1–2
), pp.
61
64
.10.1002/mawe.200800409
7.
Auricchio
,
F.
,
Di Loreto
,
M.
, and
Sacco
,
E.
,
2001
, “
Finite-Element Analysis of a Stenotic Artery Revascularization Through a Stent Insertion
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
3
), pp.
249
263
.10.1080/10255840108908007
8.
De Beule
,
M.
,
Mortier
,
P.
,
Carlier
,
S. G.
,
Verhegghe
,
B.
,
Van Impe
,
R.
, and
Verdonck
,
P.
,
2008
, “
Realistic Finite Element-Based Stent Design: The Impact of Balloon Folding
,”
J. Biomech.
,
41
(
2
), pp.
383
389
.10.1016/j.jbiomech.2007.08.014
9.
Mortier
,
P.
,
Holzapfel
,
G. A.
,
De Beule
,
M.
,
Van Loo
,
D.
,
Taeymans
,
Y.
,
Segers
,
P.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
,
2010
, “
A Novel Simulation Strategy for Stent Insertion and Deployment in Curved Coronary Bifurcations: Comparison of Three Drug-Eluting Stents
,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
88
99
.10.1007/s10439-009-9836-5
10.
Meoli
,
A.
,
Dordoni
,
E.
,
Petrini
,
L.
,
Migliavacca
,
F.
,
Dubini
,
G.
, and
Pennati
,
G.
,
2014
, “
Computational Study of Axial Fatigue for Peripheral Nitinol Stents
,”
J. Mater. Eng. Perform.
,
23
(
7
), pp.
2606
2613
.10.1007/s11665-014-0965-0
11.
Shen
,
X.
,
Zhu
,
H.
,
Ji
,
S.
,
Jiang
,
J.
, and
Deng
,
Y.
,
2019
, “
Fatigue Behavior of Stent in Tapered Arteries: The Role of Arterial Tapering and Stent Material
,”
Proc. Inst. Mech. Eng. H
,
233
(
10
), pp.
989
998
.10.1177/0954411919862400
12.
Alaimo
,
G.
,
Auricchio
,
F.
,
Conti
,
M.
, and
Zingales
,
M.
,
2017
, “
Multi-Objective Optimization of Nitinol Stent Design
,”
Med. Eng. Phys.
,
47
, pp.
13
24
.10.1016/j.medengphy.2017.06.026
13.
Dandan
,
T.
,
2020
,
Study on the Structural Design of NiTi Alloy Peripheral Vascular Stent With High Fatigue Resistance
,
Chongqing University of Technology
, Chongqing, China.
14.
Kleinstreuer
,
C.
,
Li
,
Z.
,
Basciano
,
C. A.
,
Seelecke
,
S.
, and
Farber
,
M. A.
,
2008
, “
Computational Mechanics of Nitinol Stent Grafts
,”
J. Biomech.
,
41
(
11
), pp.
2370
2378
.10.1016/j.jbiomech.2008.05.032
15.
Nikanorov
,
A.
,
Smouse
,
H. B.
,
Osman
,
K.
,
Bialas
,
M.
,
Shrivastava
,
S.
, and
Schwartz
,
L. B.
,
2008
, “
Fracture of Self-Expanding Nitinol Stents Stressed In Vitro Under Simulated Intravascular Conditions
,”
J. Vasc. Surg.
,
48
(
2
), pp.
435
440
.10.1016/j.jvs.2008.02.029
16.
Ganguly
,
A.
,
Simons
,
J.
,
Schneider
,
A.
,
Keck
,
B.
,
Bennett
,
N. R.
,
Herfkens
,
R. J.
,
Coogan
,
S. M.
, and
Fahrig
,
R.
,
2011
, “
In-Vivo Imaging of Femoral Artery Nitinol Stents for Deformation Analysis
,”
J. Vasc. Interventional Radiol.
,
22
(
2
), pp.
244
249
.10.1016/j.jvir.2010.10.019
17.
Dordoni
,
E.
,
Petrini
,
L.
,
Wu
,
W.
,
Migliavacca
,
F.
,
Dubini
,
G.
, and
Pennati
,
G.
,
2015
, “
Computational Modeling to Predict Fatigue Behavior of NiTi Stents: What Do We Need?
,”
J. Funct. Biomater.
,
6
(
2
), pp.
299
317
.10.3390/jfb6020299
18.
Lei
,
L.
,
Qi
,
X.
,
Li
,
S.
,
Yang
,
Y.
,
Hu
,
Y.
,
Li
,
B.
,
Zhao
,
S.
, and
Zhang
,
Y.
,
2019
, “
Finite Element Analysis for Fatigue Behaviour of a Self-Expanding Nitinol Peripheral Stent Under Physiological Biomechanical Conditions
,”
Comput. Biol. Med.
,
104
, pp.
205
214
.10.1016/j.compbiomed.2018.11.019
19.
He
,
R.
,
Zhao
,
L.
, and
Silberschmidt
,
V. V.
,
2023
, “
Effect of Balloon Pre-Dilation on Performance of Self-Expandable Nitinol Stent in Femoropopliteal Artery
,”
Biomech. Model. Mechanobiol.
,
22
(
1
), pp.
189
205
.10.1007/s10237-022-01641-x
20.
Meoli
,
A.
,
Dordoni
,
E.
,
Petrini
,
L.
,
Migliavacca
,
F.
,
Dubini
,
G.
, and
Pennati
,
G.
,
2013
, “
Computational Modelling of In Vitro Set-Ups for Peripheral Self-Expanding Nitinol Stents: The Importance of Stent–Wall Interaction in the Assessment of the Fatigue Resistance
,”
Cardiovasc. Eng. Technol.
,
4
(
4
), pp.
474
484
.10.1007/s13239-013-0164-4
21.
Early
,
M.
, and
Kelly
,
D. J.
,
2011
, “
The Consequences of the Mechanical Environment of Peripheral Arteries for Nitinol Stenting
,”
Med. Biol. Eng. Comput.
,
49
(
11
), pp.
1279
1288
.10.1007/s11517-011-0815-2
22.
MacTaggart
,
J. N.
,
Phillips
,
N. Y.
,
Lomneth
,
C. S.
,
Pipinos
,
I. I.
,
Bowen
,
R.
,
Timothy Baxter
,
B.
,
Johanning
,
J.
, et al.,
2014
, “
Three-Dimensional Bending, Torsion and Axial Compression of the Femoropopliteal Artery During Limb Flexion
,”
J. Biomech.
,
47
(
10
), pp.
2249
2256
.10.1016/j.jbiomech.2014.04.053
23.
Feng
,
H.
,
Chen
,
Y.
,
Zhang
,
H.
,
Su
,
J.
, and
Wang
,
L.
,
2023
, “
Comparative Analysis of Fatigue Strength and Life of Vascular Stents Under Various Deformation Behaviors
,”
J. Mater. Eng. Perform.
,
33
(
9
), pp.
4335
4344
.10.1007/s11665-023-08260-2
24.
Gokgol
,
C.
,
Diehm
,
N.
, and
Buchler
,
P.
,
2017
, “
Numerical Modeling of Nitinol Stent Oversizing in Arteries With Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy
,”
Ann. Biomed. Eng.
,
45
(
6
), pp.
1420
1433
.10.1007/s10439-017-1803-y
25.
De Bock
,
S.
,
Iannaccone
,
F.
,
De Santis
,
G.
,
De Beule
,
M.
,
Van Loo
,
D.
,
Devos
,
D.
,
Vermassen
,
F.
,
Segers
,
P.
, and
Verhegghe
,
B.
,
2012
, “
Virtual Evaluation of Stent Graft Deployment: A Validated Modeling and Simulation Study
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
129
139
.10.1016/j.jmbbm.2012.04.021
26.
Feng
,
H.
,
Wang
,
S.
,
Wang
,
Y.
,
Li
,
X.
, and
Wang
,
X.
,
2019
, “
Study on Mechanical Properties of Nitinol Iliac Vein Stent and Animal Test Under Different Release Scales
,”
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi
,
36
(
6
), pp.
1024
1031
.10.7507/1001-5515.201807006
27.
Gengsu
,
Z.
,
2002
, “
Research of the Blood Pressure in Arterise of Leg Measured in Various Lying Position
,”
Chin. J. Nurs.
, 37(
12
), pp.
12
13
.
28.
Poulson
,
W.
,
Kamenskiy
,
A.
,
Seas
,
A.
,
Deegan
,
P.
,
Lomneth
,
C.
, and
MacTaggart
,
J.
,
2018
, “
Limb Flexion-Induced Axial Compression and Bending in Human Femoropopliteal Artery Segments
,”
J. Vasc. Surg.
,
67
(
2
), pp.
607
613
.10.1016/j.jvs.2017.01.071
29.
Pelton
,
A. R.
,
Gong
,
X.-Y.
, and
Duerig
,
T.
,
2003
, “
Fatigue Testing of Diamond-Shaped Specimens
,”
Procconfe Mater. Processes Med. Devices
, 2003(
2003
), pp.
199
204
.https://imechanica.org/files/NDC%20%20Fatigue%20SMST.pdf
30.
Pelton
,
A. R.
,
Schroeder
,
V.
,
Mitchell
,
M. R.
,
Gong
,
X. Y.
,
Barney
,
M.
, and
Robertson
,
S. W.
,
2008
, “
Fatigue and Durability of Nitinol Stents
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
2
), pp.
153
164
.10.1016/j.jmbbm.2007.08.001
31.
Harvey
,
S. M.
,
2011
, “
Nitinol Stent Fatigue in a Peripheral Human Artery Subjected to Pulsatile and Articulation Loading
,”
J. Mater. Eng. Perform.
,
20
(
4–5
), pp.
697
705
.10.1007/s11665-011-9881-8
32.
Daxian
,
C.
,
2010
,
Mechanical Design Manual
,
Chemical Industry Press
, Beijing, China.
33.
Jimenez-Martinez
,
M.
,
2019
, “
Manufacturing Effects on Fatigue Strength
,”
Eng. Failure Anal.
,
108
, p.
104339
.10.1016/j.engfailanal.2019.104339
34.
Brown
,
M. W.
, and
Miller
,
K. J.
,
1973
, “
A Theory for Fatigue Failure Under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Eng.
,
187
(
1
), pp.
745
755
.10.1243/PIME_PROC_1973_187_069_02
35.
Robertson
,
S. W.
,
Pelton
,
A. R.
, and
Ritchie
,
R. O.
,
2012
, “
Mechanical Fatigue and Fracture of Nitinol
,”
Int. Mater. Rev.
,
57
(
1
), pp.
1
37
.10.1179/1743280411Y.0000000009
36.
Marrey
,
R. V.
,
Burgermeister
,
R.
,
Grishaber
,
R. B.
, and
Ritchie
,
R. O.
,
2006
, “
Fatigue and Life Prediction for Cobalt-Chromium Stents: A Fracture Mechanics Analysis
,”
Biomaterials
,
27
(
9
), pp.
1988
2000
.10.1016/j.biomaterials.2005.10.012
37.
Cheng
,
C. P.
,
Choi
,
G.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
,
2010
, “
The Effect of Aging on Deformations of the Superficial Femoral Artery Resulting From Hip and Knee Flexion: Potential Clinical Implications
,”
J. Vasc. Interventional Radiol.
,
21
(
2
), pp.
195
202
.10.1016/j.jvir.2009.08.027
38.
Klein
,
A. J.
,
Chen
,
S. J.
,
Messenger
,
J. C.
,
Hansgen
,
A. R.
,
Plomondon
,
M. E.
,
Carroll
,
J. D.
, and
Casserly
,
I. P.
,
2009
, “
Quantitative Assessment of the Conformational Change in the Femoropopliteal Artery With Leg Movement
,”
Catheter. Cardiovasc. Interventions
,
74
(
5
), pp.
787
798
.10.1002/ccd.22124
39.
Ma
,
S.
,
Feng
,
H.
,
Feng
,
H.
, and
Su
,
J.
,
2023
, “
Analysis of Fatigue Strength and Reliability of Lower Limb Arterial Stent at Different Vascular Stenosis Rates and Stent-to-Artery Ratios
,”
Ann. Biomed. Eng.
,
51
(
6
), pp.
1136
1146
.10.1007/s10439-023-03165-6
40.
Ansari
,
F.
,
Pack
,
L. K.
,
Brooks
,
S. S.
, and
Morrison
,
T. M.
,
2013
, “
Design Considerations for Studies of the Biomechanical Environment of the Femoropopliteal Arteries
,”
J. Vasc. Surg.
,
58
(
3
), pp.
804
813
.10.1016/j.jvs.2013.03.052
41.
Carbonaro
,
D.
,
Zambon
,
S.
,
Corti
,
A.
,
Gallo
,
D.
,
Morbiducci
,
U.
,
Audenino
,
A. L.
, and
Chiastra
,
C.
,
2023
, “
Impact of Nickel–Titanium Super-Elastic Material Properties on the Mechanical Performance of Self-Expandable Transcatheter Aortic Valves
,”
J. Mech. Behav. Biomed. Mater.
,
138
, p.
105623
.10.1016/j.jmbbm.2022.105623
You do not currently have access to this content.