The fluid dynamics during valve closure resulting in high shear flows and large residence times of particles has been implicated in platelet activation and thrombus formation in mechanical heart valves. Our previous studies with bileaflet valves have shown that large shear stresses induced in the gap between the leaflet edge and valve housing results in relatively high platelet activation levels, whereas flow between the leaflets results in shed vortices not conducive to platelet damage. In this study we compare the result of closing dynamics of a tilting disk valve with that of a bileaflet valve. The two-dimensional fluid-structure interaction analysis of a tilting disk valve closure mechanics is performed with a fixed grid Cartesian mesh flow solver with local mesh refinement, and a Lagrangian particle dynamic analysis for computation of potential for platelet activation. Throughout the simulation the flow remains in the laminar regime, and the flow through the gap width is marked by the development of a shear layer, which separates from the leaflet downstream of the valve. Zones of recirculation are observed in the gap between the leaflet edge and valve housing on the major orifice region of the tilting disk valve and are seen to be migrating toward the minor orifice region. Jet flow is observed at the minor orifice region and a vortex is formed, which sheds in the direction of fluid motion, as observed in experiments using PIV measurements. The activation parameter computed for the tilting disk valve at the time of closure was found to be 2.7 times greater than that of the bileaflet mechanical valve and was found to be in the vicinity of the minor orifice region, mainly due to the migration of vortical structures from the major to the minor orifice region during the leaflet rebound of the closing phase.

1.
Bodnar
,
E.
,
Grunkemeier
,
G. L.
, and
Gabbay
,
S.
, 1999, “
Heart Valve Replacement: A Statistical Review of 35 Years Results—Discussion
,”
J. Heart Valve Dis.
0966-8519,
8
, pp.
470
471
.
2.
Butchart
,
E. G.
,
Ionescu
,
A.
,
Payne
,
N.
,
Giddings
,
J.
,
Grunkemeier
,
G. L.
, and
Fraser
,
A. G.
, 2003, “
A New Scoring System to Determine Thromboembolic Risk After Heart Valve Replacement
,”
Circulation
0009-7322,
108
(
1
), pp.
68
74
.
3.
Giddens
,
D. P.
,
Yoganathan
,
A. P.
, and
Schoen
,
F. J.
, 1993, “
Prosthetic Cardiac Valves
,”
Cardiovasc. Pathol.
1054-8807,
2
, pp.
167
177
.
4.
Cannegieter
,
S. C.
,
Rosendaal
,
F. R.
, and
Briet
,
E.
, 1994, “
Thromboembolic and Bleeding Complications in Patients With Mechanical Heart Valve Prostheses
,”
Circulation
0009-7322,
89
(
2
), pp.
635
641
.
5.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
, 1997, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
0090-6964,
25
(
2
), pp.
344
356
.
6.
Yoganathan
,
A. P.
,
Chandran
,
K. B.
, and
Sotiropoulos
,
F.
, 2005, “
Flow in Prosthetic Heart Valves: State-of-the-Art and Future Directions
,”
Ann. Biomed. Eng.
0090-6964,
33
(
12
), pp.
1689
1694
.
7.
Yoganathan
,
A. P.
,
He
,
Z.
, and
Casey Jones
,
S.
, 2004, “
Fluid Mechanics of Heart Valves
,”
Annu. Rev. Biomed. Eng.
1523-9829,
6
, pp.
331
362
.
8.
Alemu
,
Y.
, and
Bluestein
,
D.
, 2007, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
0160-564X,
31
(
9
), pp.
677
688
.
9.
Nobili
,
M.
,
Sheriff
,
J.
,
Morbiducci
,
U.
,
Redaelli
,
A.
, and
Bluestein
,
D.
, 2008, “
Platelet Activation Due to Hemodynamic Shear Stresses: Damage Accumulation Model and Comparison to In Vitro Measurements
,”
ASAIO J.
1058-2916,
54
(
1
), pp.
64
72
.
10.
Sotiropoulos
,
F.
, and
Borazjani
,
I.
, 2009, “
A Review of State-of-the-Art Numerical Methods for Simulating Flow Through Mechanical Heart Valves
,”
Med. Biol. Eng. Comput.
0140-0118,
47
(
3
), pp.
245
256
.
11.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
, 2008, “
Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction With Complex 3D Rigid Bodies
,”
J. Comput. Phys.
0021-9991,
227
, pp.
7587
7620
.
12.
Dasi
,
L. P.
,
Ge
,
L.
,
Simon
,
H. A.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
, 2007, “
Vorticity Dynamics of a Bileaflet Mechanical Heart Valve in an Axisymmetric Aorta
,”
Phys. Fluids
1070-6631,
19
, p.
067105
.
13.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
, 2008, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses
,”
Ann. Biomed. Eng.
0090-6964,
36
(
2
), pp.
276
297
.
14.
De Tullio
,
M. D.
,
Cristallo
,
A.
,
Balaras
,
E.
, and
Verzicco
,
R.
, 2009, “
Direct Numerical Simulation of Pulsatile Flow Through an Aortic Bileaflet Mechanical Heart Valve
,”
J. Fluid Mech.
0022-1120,
622
, pp.
259
290
.
15.
Nobili
,
M.
,
Morbiducci
,
U.
,
Ponzini
,
R.
,
Del Gaudio
,
C.
,
Balducci
,
A.
,
Grigioni
,
M.
,
Maria Montevecchi
,
F.
, and
Redaelli
,
A.
, 2008, “
Numerical Simulation of the Dynamics of a Bileaflet Prosthetic Heart Valve Using a Fluid-Structure Interaction Approach
,”
J. Biomech.
0021-9290,
41
(
11
), pp.
2539
2550
.
16.
Krishnan
,
S.
,
Udaykumar
,
H. S.
,
Marshall
,
J. S.
, and
Chandran
,
K. B.
, 2006, “
Two-Dimensional Dynamic Simulation of Platelet Activation During Mechanical Heart Valve Closure
,”
Ann. Biomed. Eng.
0090-6964,
34
(
10
), pp.
1519
1534
.
17.
Lamson
,
T. C.
,
Rosenberg
,
G.
,
Geselowitz
,
D. B.
,
Deutsch
,
S.
,
Stinebring
,
D. R.
,
Frangos
,
J. A.
, and
Tarbell
,
J. M.
, 1993, “
Relative Blood Damage in the Three Phases of a Prosthetic Heart Valve Flow Cycle
,”
ASAIO J.
1058-2916,
39
(
3
), pp.
626
633
.
18.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2003, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
0160-564X,
27
(
9
), pp.
840
846
.
19.
Bluestein
,
D.
,
Rambod
,
E.
, and
Gharib
,
M.
, 2000, “
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
125
134
.
20.
Manning
,
K. B.
,
Herbertson
,
L. H.
,
Fontaine
,
A. A.
, and
Deutsch
,
S.
, 2008, “
A Detailed Fluid Mechanics Study of Tilting Disk Mechanical Heart Valve Closure and the Implications to Blood Damage
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
4
), p.
041001
.
21.
Cheng
,
R.
,
Lai
,
Y. G.
, and
Chandran
,
K. B.
, 2003, “
Two-Dimensional Fluid-Structure Interaction Simulation of Bi-Leaflet Mehcanical Heart Valve Flow Dynamics
,”
J. Heart Valve Dis.
0966-8519,
12
, pp.
772
780
.
22.
Cheng
,
R.
,
Lai
,
Y. G.
, and
Chandran
,
K. B.
, 2004, “
Three-Dimensional Fluid-Structure Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics
,”
Ann. Biomed. Eng.
0090-6964,
32
(
11
), pp.
1471
1483
.
23.
Govindarajan
,
V.
,
Udaykumar
,
H. S.
,
Herbertson
,
H. S.
,
Deutsch
,
S.
,
Manning
,
K. B.
, and
Chandran
,
K. B.
, 2009, “
Impact of design parameters on bi-leaflet mechanical heart valve dynamics
,”
J. Heart Valve Dis.
0966-8519,
18
, pp.
535
546
.
24.
Yoganathan
,
A. P.
,
Corcoran
,
W. H.
,
Harrison
,
E. C.
, and
Carl
,
J. R.
, 1978, “
The Bjork-Shiley Aortic Valve Prosthesis, Flow Characteristics, Thrombus Formation, and Tissue Overgrowth
,”
Circulation
0009-7322,
58
, pp.
70
76
.
25.
Peskin
,
C. S.
, and
Printz
,
B. F.
, 1993, “
Improved Volume Conservation in the Computation of Flows With Immersed Elastic Boundaries
,”
J. Comput. Phys.
0021-9991,
105
, pp.
33
46
.
26.
Marella
,
S.
,
Krishnan
,
S.
,
Liu
,
H.
, and
Udaykumar
,
H. S.
, 2005, “
Sharp Interface Cartesian Grid Method I: An Easily Implemented Technique for 3D Moving Boundary Computations
,”
J. Comput. Phys.
0021-9991,
210
, pp.
1
31
.
27.
Chandran
,
K. B.
,
Lee
,
C. S.
, and
Chen
,
L. D.
, 1994, “
Pressure Field in the Vicinity of Mechanical Valve Occluders at the Instant of Valve Closure: Correlation With Cavitation Initiation
,”
J. Heart Valve Dis.
0966-8519,
3
(
1
), pp.
65
75
.
28.
Chen
,
H.
, and
Marshall
,
J. S.
, 1999, “
A Lagrangian Vorticity Method for Two-Phase Particulate Flows With Two-Way Coupling
,”
J. Comput. Phys.
0021-9991,
148
, pp.
169
198
.
29.
Kini
,
V.
,
Bachmann
,
C.
,
Fontaine
,
A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2000, “
Flow Visualization in Mechanical Heart Valves: Occluder Rebound and Cavitation Potential
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
431
441
.
30.
Lim
,
W. L.
,
Chew
,
Y. T.
,
Chew
,
T. C.
, and
Low
,
H. T.
, 1998, “
Steady Flow Dynamics of Prosthetic Aortic Heart Valves: A Comparative Evaluation With PIV Techniques
,”
J. Biomech.
0021-9290,
31
(
5
), pp.
411
421
.
You do not currently have access to this content.