The recent transition from multiple-port to single-port systems in minimally invasive intervention (MII) procedures has created a need for more flexible, dexterous robotic manipulation devices capable of spanning an entire surgical workspace without the risk of collateral damage. The design of such devices requires a careful balance of the mechanical complexity needed to facilitate clinical functionality and the cost of manufacturing and operating the device. This paper presents a novel metric for measuring the design fitness of kinematically redundant robotic MII devices and for optimizing them to achieve that balance. The proposed fitness metric rewards designs that are conducive to collision avoidance and energy conservation while penalizing those with exorbitant design complexities that adversely affect the economic feasibility of an MII system. The authors’ metric is used here to design a kinematically redundant, single-port MII device capable of accessing the cardiothoracic cavity through a single subxiphoid port and reaching several regions of interest, consistent with procedures such as epicardial ablation and therapeutic substance injection, with minimal physiologic disturbance. The design of this device is determined by a morphological optimization process, which searches a discrete mechanical design parameter space, consisting of linkage parts, part dimensions, and actuator types, using genetic algorithms. The execution of specific surgical maneuvers is simulated for each candidate MII device design, and the design is improved until the fitness metric is maximized. The results of this optimization study demonstrate that redesigning a 20 degree-of-freedom (DOF) MII device using the proposed metric decreased the DOF in the design by 45% while ensuring near-optimal levels of kinematic flexibility. The results also demonstrate the ability of the fitness metric to elucidate the relationship between functionality and complexity and to produce suitable device designs over a broad range of performance and cost goals. The authors conclude that this new design fitness metric, while heuristic in nature, holds the potential to improve both the clinical value and the economy of a wide variety of single-port MII devices, including those used in cardiothoracic surgery.

1.
Howe
,
R.
, and
Matsuoka
,
Y.
, 1999, “
Robotics for Surgery
,”
Annu. Rev. Biomed. Eng.
1523-9829,
1
(
1
), pp.
211
240
.
2.
Mack
,
M.
, 2001, “
Minimally Invasive and Robotic Surgery
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
285
(
5
), pp.
568
572
.
3.
Darzi
,
A.
, and
Mackay
,
S.
, 2002, “
Recent Advances in Minimal Access Surgery
,”
BMJ
0959-8138,
324
(
7328
), pp.
31
34
.
4.
Corral
,
G.
,
Ibáñez
,
L.
,
Nguyen
,
C.
,
Stoianovici
,
D.
,
Navab
,
N.
, and
Cleary
,
K. R.
, 2004, “
Robot Control by Fluoroscopic Guidance for Minimally Invasive Spine Procedures
,”
CARS 2004 - Computer Assisted Radiology and Surgery: Proceedings of the 18th International Congress and Exhibition
,
H. U.
Lemke
, ed.,
Elsevier
,
New York
, pp.
509
514
.
5.
Kaouk
,
J. H.
,
Haber
,
G. P.
,
Goel
,
R. K.
,
Desai
,
M. M.
,
Aron
,
M.
,
Rackley
,
R. R.
,
Moore
,
C.
, and
Gill
,
I. S.
, 2008, “
Single-Port Laparoscopic Surgery in Urology: Initial Experience
,”
Br. J. Urol.
0007-1331,
71
(
1
), pp.
3
6
.
6.
Chitwood
,
W. R.
, and
Nifong
,
L. W.
, 2000, “
Minimally Invasive Videloscopic Mitral Valve Surgery: The Current Role of Surgical Robotics
,”
J. Card. Surg.
0886-0440,
15
(
1
), pp.
61
75
.
7.
Degani
,
A.
,
Choset
,
H.
,
Wolf
,
A.
,
Ota
,
T.
, and
Zenati
,
M. A.
, 2006, “
Percutaneous Intrapericardial Interventions Using a Highly Articulated Robotic Probe
,”
2006 IEEE/RAS-EMBS International Conference of Biomedical Robotics and Biomechatronics
, Pisa, Italy, pp.
7
12
.
8.
Simaan
,
N.
,
Taylor
,
R.
, and
Flint
,
P.
, 2004, “
A Dexterous System for Laryngeal Surgery
,”
Proceedings of the 2004 IEEE International Conference on Robotics and Automation
, New Orleans, LA, Vol.
1
, pp.
351
357
.
9.
Charles
,
S.
,
Das
,
H.
,
Ohm
,
T.
,
Boswell
,
C.
,
Rodriguez
,
G.
,
Steele
,
R.
, and
Istrate
,
D.
, 1997, “
Dexterity-Enhanced Telerobotic Microsurgery
,”
Proceedings of the Eighth International Conference on Advanced Robotics
, Monterey, CA, pp.
5
10
.
10.
Reynaerts
,
D.
,
Peirs
,
J.
, and
Van Brussel
,
H.
, 1996, “
Design of a Shape Memory Actuated Gastrointestinal Intervention System
,”
Eurosensors X
, Leuven, Belgium, pp.
1181
1184
.
11.
Jutley
,
R. S.
,
Khalil
,
M. W.
, and
Rocco
,
G.
, 2005, “
Uniportal vs Standard Three-Port Vats Technique for Spontaneous Pneumothorax: Comparison of Post-Operative Pain and Residual Paraesthesia
,”
Eur. J. Cardiothorac Surg.
1010-7940,
28
(
1
), pp.
43
46
.
12.
Hammond
,
F.
, III
, and
Shimada
,
K.
, 2009, “
Improvement of Manufacturing Workcell Layout Design Using Weighted Isotropy Metrics
,”
Proceedings of the IEEE International Conference on Mechatronics and Automation
, Changchun, China, pp.
3408
3414
.
13.
Mack
,
M.
, 1999, “
Is There a Future for Minimally Invasive Cardiac Surgery?
Eur. J. Cardiothorac Surg.
1010-7940,
16
(
2
), pp.
S119
S125
.
14.
Gleason
,
J. D.
,
Nguyen
,
K. P.
,
Kissinger
,
K. V.
,
Manning
,
W. J.
, and
Verrier
,
R. L.
, 2002, “
Myocardial Drug Distribution Pattern Following Intrapericardial Delivery: An MRI Analysis
,”
J. Cardiovasc. Magn. Reson.
1097-6647,
4
(
3
), pp.
311
316
.
15.
Ota
,
T.
,
Patronik
,
N. A.
,
Schwartzman
,
D.
,
Riviere
,
C. N.
, and
Zenati
,
M. A.
, 2008, “
Minimally Invasive Epicardial Injections Using a Novel Semiautonomous Robotic Device
,”
Circulation
0009-7322,
118
(
14
), pp.
S115
S120
.
16.
Leclercq
,
C.
, and
Kass
,
D. A.
, 2002, “
Retiming the Failing Heart: Principles and Current Clinical Status of Cardiac Resynchronization
,”
J. Am. Coll. Cardiol.
0735-1097,
39
(
2
), pp.
194
201
.
17.
Losordo
,
D. W.
,
Vale
,
P. R.
, and
Isner
,
J. M.
, 1999, “
Gene Therapy for Myocardial Angiogenesis
,”
Am. Heart J.
0002-8703,
138
(
2
), pp.
S132
S141
.
18.
Li
,
C.
, and
Rahn
,
C. D.
, 2002, “
Design of Continuous Backbone, Cable-Driven Robots
,”
ASME J. Mech. Des.
0161-8458,
124
(
2
), pp.
265
271
.
19.
Patronik
,
N. A.
,
Zenati
,
M. A.
, and
Riviere
,
C. N.
, 2004, “
Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions
,”
Proceedings of the Seventh International Medical Image Computing and Computer Assisted Intervention
, Saint Malo, France, pp.
9
16
.
20.
D’avila
,
A.
,
Scanavacca
,
M.
,
Sosa
,
E.
,
Ruskin
,
J. N.
, and
Reddy
,
V. Y.
, 2003, “
Pericardial Anatomy for the Interventional Electrophysiologist
,”
J. Cardiovasc. Electrophysiol.
1045-3873,
14
(
4
), pp.
422
430
.
21.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
, 2005,
Robot Modeling and Control
,
Wiley
,
Hoboken, NJ
, Chap. 4.
22.
Buss
,
S.
, 2004, “
Introduction to Inverse Kinematics With Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods
,” unpublished survey article.
23.
Yoshikawa
,
T.
, 1985, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
4
(
2
), pp.
3
9
.
24.
Kim
,
J. O.
, and
Khosla
,
K.
, 1991, “
Dexterity Measures for Design and Control of Manipulators
,”
Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems
, Osaka, Japan, pp.
758
763
.
25.
Stocco
,
L.
,
Salcudean
,
S. E.
, and
Sassani
,
F.
, 1997, “
Mechanism Design for Global Isotropy With Applications to Haptic Interfaces
,”
Proceedings of the Sixth Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperated Systems
, Dallas, TX, pp.
115
122
.
26.
Hammond
,
F.
, III
, and
Shimada
,
K.
, 2009, “
Morphological Design Optimization of Kinematically Redundant Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Kobe, Japan, pp.
2931
2938
.
27.
Maciejewski
,
A. A.
, and
Klein
,
C. A.
, 1985, “
Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments
,”
Int. J. Robot. Res.
0278-3649,
4
(
3
), pp.
109
117
.
28.
Hammond
,
F.
, III
, and
Shimada
,
K.
, 2009, “
Improvement of Kinematically Redundant Manipulator Design and Placement Using Torque-Weighted Isotropy Measures
,”
Proceedings of the IEEE International Conference on Advanced Robotics
, Munich, Germany, pp.
1
8
.
29.
Featherstone
,
R.
, 2008,
Rigid Body Dynamics Algorithms
,
Springer-Verlag
,
New York
.
30.
Hollerbach
,
J.
, and
Suh
,
K.
, 1987, “
Redundancy Resolution of Manipulators Through Torque Optimization
,”
IEEE J. Rob. Autom.
0882-4967,
3
(
4
), pp.
308
316
.
31.
Ma
,
S.
, 1995, “
A Stabilized Local Torque Optimization Technique for Redundant Manipulators
,”
Proceedings of the IEEE International Conference of Robotics and Automation
, Nagoya, Japan, pp.
2791
2796
.
You do not currently have access to this content.