Abstract

Microneedles (MNs) provide a minimally invasive alternative to intravitreal injections and a promising means to sustainable ocular drug delivery. To optimize the sustained drug release profile and to ease the administration of the MN array to the eye, the number of MNs in an MN array and their layout need to be carefully selected. In this study, the drug release kinetics of MN arrays with varying numbers of MNs (8, 12, and 16) is studied over a four-week period. The MN arrays show a much more uniform drug release profile than the single injections. Only the 16-needle MN array fully released all the amount of loaded drug at the end of the 4-week period. Both 8- and 12-needle arrays showed a steady release rate over the 4-week period, which is the longest sustained release duration that has been reported. Zero-order models are created to predict drug release profiles for the three MN arrays. It is estimated that the MN array with 8 needles can deliver the drug for up to 6 weeks. The models can be used to design MN arrays with a given targeted therapeutic index for sustained drug delivery.

References

References
1.
Maylahn
,
C.
,
Gohdes
,
D. M.
,
Balamurugan
,
A.
, and
Larsen
,
B. A.
,
2005
, “
Age-Related Eye Diseases: An Emerging Challenge for Public Health Professionals
,”
Prev. Chronic. Dis.
,
2
(
3
), pp.
1
6
.https://pubmed.ncbi.nlm.nih.gov/15963319/
2.
Evans
,
J. R.
, and
Lawrenson
,
J. G.
,
2017
, “
Antioxidant Vitamin and Mineral Supplements for Slowing the Progression of Age‐Related Macular Degeneration
,”
Cochrane Database Syst. Rev.
, (
7
), pp.
1
105
.10.1002/14651858.CD000254.pub4
3.
Jager
,
R. D.
,
Mieler
,
W. F.
, and
Miller
,
J. W.
,
2008
, “
Age-Related Macular Degeneration
,”
N. Engl. J. Med.
,
358
(
24
), pp.
2606
2617
.10.1056/NEJMra0801537
4.
Mitchell
,
P.
,
Liew
,
G.
,
Gopinath
,
B.
, and
Wong
,
T. Y.
,
2018
, “
Age-Related Macular Degeneration
,”
Lancet
,
392
(
10153
), pp.
1147
1159
.10.1016/S0140-6736(18)31550-2
5.
Idrees
,
F.
,
Vaideanu
,
D.
,
Fraser
,
S. G.
,
Sowden
,
J. C.
, and
Khaw
,
P. T.
,
2006
, “
A Review of Anterior Segment Dysgeneses
,”
Surv. Ophthalmol.
,
51
(
3
), pp.
213
231
.10.1016/j.survophthal.2006.02.006
6.
Geroski
,
D. H.
, and
Edelhauser
,
H. F.
,
2001
, “
Transscleral Drug Delivery for Posterior Segment Disease
,”
Adv. Drug Deliv. Rev.
,
52
(
1
), pp.
37
48
.10.1016/S0169-409X(01)00193-4
7.
Prausnitz
,
M. R.
,
Jiang
,
J.
,
Patel
,
S. R.
,
Gill
,
H. S.
,
Ghate
,
D.
,
McCarey
,
B. E.
,
Geroski
,
D. H.
, and
Edelhauser
,
H. F.
,
2007
, “
Ocular Drug Delivery Using Microneedles
,”
Invest. Ophthalmol. Vis. Sci.
,
48
(
13
), pp.
3191
3191
.https://iovs.arvojournals.org/article.aspx?articleid=2385902
8.
Lee
,
S. S.
,
Hughes
,
P.
,
Ross
,
A. D.
, and
Robinson
,
M. R.
,
2010
, “
Biodegradable Implants for Sustained Drug Release in the Eye
,”
Pharm. Res.
,
27
(
10
), pp.
2043
2053
.10.1007/s11095-010-0159-x
9.
Dubald
,
M.
,
Bourgeois
,
S.
,
Andrieu
,
V.
, and
Fessi
,
H.
,
2018
, “
Ophthalmic Drug Delivery Systems for Antibiotherapy—A Review
,”
Pharmaceutics
,
10
(
1
), p.
10
.10.3390/pharmaceutics10010010
10.
Thakur Singh
,
R. R.
,
Tekko
,
I.
,
McAvoy
,
K.
,
McMillan
,
H.
,
Jones
,
D.
, and
Donnelly
,
R. F.
,
2017
, “
Minimally Invasive Microneedles for Ocular Drug Delivery
,”
Expert Opin. Drug Deliv.
,
14
(
4
), pp.
525
537
.10.1080/17425247.2016.1218460
11.
Smith
,
S. J.
,
Smith
,
B. D.
, and
Mohney
,
B. G.
,
2014
, “
Ocular Side Effects Following Intravitreal Injection Therapy for Retinoblastoma: A Systematic Review
,”
Br. J. Ophthalmol.
,
98
(
3
), pp.
292
297
.10.1136/bjophthalmol-2013-303885
12.
Shikari
,
H.
,
Silva
,
P. S.
, and
Sun
,
J. K.
,
2014
, “
Complications of Intravitreal Injections in Patients With Diabetes
,”
Semin. Ophthalmol.
,
29
(
5–6
), pp.
276
289
.10.3109/08820538.2014.962167
13.
Jamrozy-Witkowska
,
A.
,
Kowalska
,
K.
,
Jankowska-Lech
,
I.
,
Terelak-Borys
,
B.
,
Nowosielska
,
A.
, and
Grabska-Liberek
,
I.
,
2011
, “
[Complications of Intravitreal Injections–Own Experience]
,”
Klin. Oczna
,
113
(
4–6
), pp.
127
131
.https://pubmed.ncbi.nlm.nih.gov/21913440/#:~:text=The%20most%20common%20ocular%20complication,23.4%25)%20after%20Kenalog%20injection
14.
Than
,
A.
,
Liu
,
C.
,
Chang
,
H.
,
Duong
,
P. K.
,
Cheung
,
C. M. G.
,
Xu
,
C.
,
Wang
,
X.
, and
Chen
,
P.
,
2018
, “
Self-Implantable Double-Layered Micro-Drug-Reservoirs for Efficient and Controlled Ocular Drug Delivery
,”
Nat. Commun.
,
9
(
1
), p.
4433
.10.1038/s41467-018-06981-w
15.
Thakur
,
R. R. S.
,
Tekko
,
I. A.
,
Al-Shammari
,
F.
,
Ali
,
A. A.
,
McCarthy
,
H.
, and
Donnelly
,
R. F.
,
2016
, “
Rapidly Dissolving Polymeric Microneedles for Minimally Invasive Intraocular Drug Delivery
,”
Drug Deliv. Transl. Res.
,
6
(
6
), pp.
800
815
.10.1007/s13346-016-0332-9
16.
Lee
,
J. W.
, and
Prausnitz
,
M. R.
,
2018
, “
Drug Delivery Using Microneedle Patches: Not Just for Skin
,”
Expert Opin. Drug Deliv.
,
15
(
6
), pp.
541
543
.10.1080/17425247.2018.1471059
17.
Thakur
,
R. R. S.
,
Fallows
,
S. J.
,
McMillan
,
H. L.
,
Donnelly
,
R. F.
, and
Jones
,
D. S.
,
2014
, “
Microneedle-Mediated Intrascleral Delivery of In Situ Forming Thermoresponsive Implants for Sustained Ocular Drug Delivery
,”
J. Pharm. Pharmacol.
,
66
(
4
), pp.
584
595
.10.1111/jphp.12152
18.
Chen
,
M.-C.
,
Ling
,
M.-H.
,
Lai
,
K.-Y.
, and
Pramudityo
,
E.
,
2012
, “
Chitosan Microneedle Patches for Sustained Transdermal Delivery of Macromolecules
,”
Biomacromolecules
,
13
(
12
), pp.
4022
4031
.10.1021/bm301293d
19.
Chen
,
M.-C.
,
Huang
,
S.-F.
,
Lai
,
K.-Y.
, and
Ling
,
M.-H.
,
2013
, “
Fully Embeddable Chitosan Microneedles as a Sustained Release Depot for Intradermal Vaccination
,”
Biomaterials
,
34
(
12
), pp.
3077
3086
.10.1016/j.biomaterials.2012.12.041
20.
Waite
,
D.
,
Wang
,
Y.
,
Jones
,
D.
,
Stitt
,
A.
, and
Singh
,
T. R. R.
,
2017
, “
Posterior Drug Delivery Via Periocular Route: Challenges and Opportunities
,”
Ther. Deliv.
,
8
(
8
), pp.
685
699
.10.4155/tde-2017-0097
21.
Olatunji
,
O.
,
Das
,
D. B.
, and
Nassehi
,
V.
,
2012
, “
Modelling Transdermal Drug Delivery Using Microneedles: Effect of Geometry on Drug Transport Behaviour
,”
J. Pharm. Sci.
,
101
(
1
), pp.
164
175
.10.1002/jps.22736
22.
Davidson
,
A.
,
Al-Qallaf
,
B.
, and
Das
,
D. B.
,
2008
, “
Transdermal Drug Delivery by Coated Microneedles: Geometry Effects on Effective Skin Thickness and Drug Permeability
,”
Chem. Eng. Res. Des.
,
86
(
11
), pp.
1196
1206
.10.1016/j.cherd.2008.06.002
23.
Al-Qallaf
,
B.
, and
Das
,
D. B.
,
2009
, “
Optimizing Microneedle Arrays to Increase Skin Permeability for Transdermal Drug Delivery
,”
Ann. N. Y. Acad. Sci.
,
1161
(
1
), pp.
83
94
.10.1111/j.1749-6632.2009.04083.x
24.
Al-Qallaf
,
B.
, and
Das
,
D. B.
,
2008
, “
Optimization of Square Microneedle Arrays for Increasing Drug Permeability in Skin
,”
Chem. Eng. Sci.
,
63
(
9
), pp.
2523
2535
.10.1016/j.ces.2008.02.007
25.
Amer
,
M.
, and
Chen
,
R. K.-R.
,
2020
, “
Self-Adhesive Microneedles With Interlocking Features for Sustained Ocular Drug Delivery
,”
Macromol. Biosci.
,
20
(
6
), p.
2000089
.10.1002/mabi.202000089
26.
Bediz
,
B.
,
Korkmaz
,
E.
,
Khilwani
,
R.
,
Donahue
,
C.
,
Erdos
,
G.
,
Falo
,
L. D.
, and
Ozdoganlar
,
O. B.
,
2014
, “
Dissolvable Microneedle Arrays for Intradermal Delivery of Biologics: Fabrication and Application
,”
Pharm. Res.
,
31
(
1
), pp.
117
135
.10.1007/s11095-013-1137-x
27.
Gupta
,
S.
,
Goswami
,
S.
, and
Sinha
,
A.
,
2012
, “
A Combined Effect of Freeze–Thaw Cycles and Polymer Concentration on the Structure and Mechanical Properties of Transparent PVA Gels
,”
Biomed. Mater.
,
7
(
1
), p.
015006
.10.1088/1748-6041/7/1/015006
28.
Hassan
,
C. M.
, and
Peppas
,
N. A.
,
2000
, “
Structure and Morphology of Freeze/Thawed PVA Hydrogels
,”
Macromolecules
,
33
(
7
), pp.
2472
2479
.10.1021/ma9907587
29.
Fogli
,
G.
,
Orsi
,
G.
,
Maria
,
C. D.
,
Montemurro
,
F.
,
Palla
,
M.
,
Rizzo
,
S.
, and
Vozzi
,
G.
,
2014
, “
New Eye Phantom for Ophthalmic Surgery
,”
J. Biomed. Opt.
,
19
(
6
), p.
068001
.10.1117/1.JBO.19.6.068001
30.
Miura
,
Y.
,
Uematsu
,
M.
,
Teshima
,
M.
,
Suzuma
,
K.
,
Kumagami
,
T.
,
Sasaki
,
H.
, and
Kitaoka
,
T.
,
2011
, “
Injection Site and Pharmacokinetics After Intravitreal Injection of Immunoglobulin G
,”
J. Ocul. Pharmacol. Ther.
,
27
(
1
), pp.
35
41
.10.1089/jop.2010.0112
31.
Xu
,
Y.
,
Jia
,
Y.
,
Wang
,
Z.
, and
Wang
,
Z.
,
2013
, “
Mathematical Modeling and Finite Element Simulation of Slow Release of Drugs Using Hydrogels as Carriers With Various Drug Concentration Distributions
,”
J. Pharm. Sci.
,
102
(
5
), pp.
1532
1543
.10.1002/jps.23497
32.
Dash
,
S.
,
Murthy
,
P. N.
,
Nath
,
L.
, and
Chowdhury
,
P.
,
2010
, “
Kinetic Modeling on Drug Release From Controlled Drug Delivery Systems
,”
Acta Pol. Pharm.
,
67
(
3
), pp.
217
223
.https://pubmed.ncbi.nlm.nih.gov/20524422/
33.
Paolino
,
D.
,
Tudose
,
A.
,
Celia
,
C.
,
Di Marzio
,
L.
,
Cilurzo
,
F.
, and
Mircioiu
,
C.
,
2019
, “
Mathematical Models as Tools to Predict the Release Kinetic of Fluorescein From Lyotropic Colloidal Liquid Crystals
,”
Materials (Basel)
,
12
(
5
), p.
693
.10.3390/ma12050693
You do not currently have access to this content.