Abstract

The application of radio frequency ablation (RFA) has been widely explored in treating various types of cardiac arrhythmias. Computational modeling provides a safe and viable alternative to ex vivo and in vivo experimental studies for quantifying the effects of different variables efficiently and reliably, apart from providing a priori estimates of the ablation volume attained during cardiac ablation procedures. In this contribution, we report a fully coupled electrothermomechanical model for a more accurate prediction of the treatment outcomes during the radio frequency cardiac ablation. A numerical model comprising of cardiac tissue and the cardiac chamber has been developed in which an electrode has been inserted perpendicular to the cardiac tissue to simulate actual clinical procedures. Temperature-dependent heat capacity, electrical and thermal conductivities, and blood perfusion rate have been considered to model more realistic scenarios. The effects of blood flow and contact force of the electrode tip on the treatment outcomes of a fully coupled model of RFA have been systematically investigated. The numerical study demonstrates that the predicted ablation volume of RFA is significantly dependent on the blood flow rate in the cardiac chamber and also on the tissue deformation induced due to electrode insertion depth of 1.5 mm or higher.

References

References
1.
Almekkawy
,
M.
,
Chen
,
J.
,
Ellis
,
M. D.
,
Haemmerich
,
D.
,
Holmes
,
D. R.
,
Linte
,
C. A.
,
Panescu
,
D.
,
Pearce
,
J.
,
Prakash
,
P.
, and
Zderic
,
V.
,
2020
, “
Therapeutic Systems and Technologies: State-of-the-Art Applications, Opportunities, and Challenges
,”
IEEE Rev. Biomed. Eng.
,
13
, pp.
325
339
.10.1109/RBME.2019.2908940
2.
Kok
,
H. P.
,
Cressman
,
E. N.
,
Ceelen
,
W.
,
Brace
,
C. L.
,
Ivkov
,
R.
,
Grüll
,
H.
,
Ter Haar
,
G.
,
Wust
,
P.
, and
Crezee
,
J.
,
2020
, “
Heating Technology for Malignant Tumors: A Review
,”
Int. J. Hyperthermia
,
37
(
1
), pp.
711
741
.10.1080/02656736.2020.1779357
3.
Singh
,
S.
, and
Melnik
,
R.
,
2020
, “
Thermal Ablation of Biological Tissues in Disease Treatment: A Review of Computational Models and Future Directions
,”
Electromagn. Biol. Med.
,
39
(
2
), pp.
49
88
.10.1080/15368378.2020.1741383
4.
Zhang
,
B.
,
Moser
,
M. A.
,
Zhang
,
E. M.
,
Luo
,
Y.
,
Liu
,
C.
, and
Zhang
,
W.
,
2016
, “
A Review of Radiofrequency Ablation: Large Target Tissue Necrosis and Mathematical Modelling
,”
Phys. Med.
,
32
(
8
), pp.
961
971
.10.1016/j.ejmp.2016.07.092
5.
Huang
,
S. K. S.
, and
Miller
,
J. M.
,
2020
,
Catheter Ablation of Cardiac Arrhythmias
,
Elsevier
,
Philadelphia, PA
.
6.
Linte
,
C. A.
,
Camp
,
J. J.
,
Rettmann
,
M. E.
,
Haemmerich
,
D.
,
Aktas
,
M. K.
,
Huang
,
D. T.
,
Packer
,
D. L.
, and
Holmes
,
D. R.
,
2018
, “
Lesion Modeling, Characterization, and Visualization for Image-Guided Cardiac Ablation Therapy Monitoring
,”
J. Med. Imaging
,
5
(
02
), p.
1
.10.1117/1.JMI.5.2.021218
7.
Singh
,
S.
, and
Melnik
,
R.
,
2019
, “
Coupled Thermo-Electro-Mechanical Models for Thermal Ablation of Biological Tissues and Heat Relaxation Time Effects
,”
Phys. Med. Biol.
,
64
(
24
), p.
245008
.10.1088/1361-6560/ab4cc5
8.
Singh
,
S.
, and
Repaka
,
R.
,
2018
, “
Quantification of Thermal Injury to the Healthy Tissue Due to Imperfect Electrode Placements During Radiofrequency Ablation of Breast Tumor
,”
J. Eng. Sci. Med. Diagn. Ther.
,
1
(
1
), p.
011002
.10.1115/1.4038237
9.
Fang
,
Z.
,
Zhang
,
B.
,
Moser
,
M.
,
Zhang
,
E.
, and
Zhang
,
W.
,
2018
, “
Design of a Novel Electrode of Radiofrequency Ablation for Large Tumors: A Finite Element Study
,”
J. Eng. Sci. Med. Diagn. Ther.
,
1
(
1
), p.
011001
.10.1115/1.4038129
10.
Singh
,
S.
, and
Repaka
,
R.
,
2018
, “
Numerical Study to Establish Relationship Between Coagulation Volume and Target Tip Temperature During Temperature-Controlled Radiofrequency Ablation
,”
Electromagn. Biol. Med.
,
37
(
1
), pp.
13
22
.10.1080/15368378.2017.1422262
11.
Singh
,
S.
, and
Repaka
,
R.
,
2017
, “
Temperature-Controlled Radiofrequency Ablation of Different Tissues Using Two-Compartment Models
,”
Int. J. Hyperthermia
,
33
(
2
), pp.
122
134
.10.1080/02656736.2016.1223890
12.
Singh
,
S.
, and
Repaka
,
R.
,
2017
, “
Effect of Different Breast Density Compositions on Thermal Damage of Breast Tumor During Radiofrequency Ablation
,”
Appl. Therm. Eng.
,
125
, pp.
443
451
.10.1016/j.applthermaleng.2017.07.057
13.
Zhang
,
B.
,
Moser
,
M. A.
,
Zhang
,
E. M.
,
Luo
,
Y.
,
Zhang
,
H.
, and
Zhang
,
W.
,
2014
, “
Study of the Relationship Between the Target Tissue Necrosis Volume and the Target Tissue Size in Liver Tumours Using Two-Compartment Finite Element RFA Modelling
,”
Int. J. Hyperthermia
,
30
(
8
), pp.
593
602
.10.3109/02656736.2014.984000
14.
Gonzalez-Suarez
,
A.
, and
Berjano
,
E.
,
2016
, “
Comparative Analysis of Different Methods of Modeling the Thermal Effect of Circulating Blood Flow During RF Cardiac Ablation
,”
IEEE Trans. Biomed. Eng.
,
63
(
2
), pp.
250
259
.10.1109/TBME.2015.2451178
15.
González-Suárez
,
A.
,
Berjano
,
E.
,
Guerra
,
J. M.
, and
Gerardo-Giorda
,
L.
,
2016
, “
Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction
,”
PLoS One
,
11
(
3
), p.
e0150356
.10.1371/journal.pone.0150356
16.
Pérez
,
J. J.
,
González-Suárez
,
A.
, and
Berjano
,
E.
,
2018
, “
Numerical Analysis of Thermal Impact of Intramyocardial Capillary Blood Flow During Radiofrequency Cardiac Ablation
,”
Int. J. Hyperthermia
,
34
(
3
), pp.
243
249
.10.1080/02656736.2017.1336258
17.
González-Suárez
,
A.
,
Pérez
,
J. J.
, and
Berjano
,
E.
,
2018
, “
Should Fluid Dynamics Be Included in Computer Models of RF Cardiac Ablation by Irrigated-Tip Electrodes?
,”
Biomed. Eng. Online
,
17
(
1
), p.
43
.10.1186/s12938-018-0475-7
18.
Petras
,
A.
,
Leoni
,
M.
,
Guerra
,
J. M.
,
Jansson
,
J.
, and
Gerardo‐Giorda
,
L.
,
2019
, “
A Computational Model of Open‐Irrigated Radiofrequency Catheter Ablation Accounting for Mechanical Properties of the Cardiac Tissue
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
11
), p.
e3232
.10.1002/cnm.3232
19.
Yan
,
S.
,
Gu
,
K.
,
Wu
,
X.
, and
Wang
,
W.
,
2020
, “
Computer Simulation Study on the Effect of Electrode–Tissue Contact Force on Thermal Lesion Size in Cardiac Radiofrequency Ablation
,”
Int. J. Hyperthermia
,
37
(
1
), pp.
37
48
.10.1080/02656736.2019.1708482
20.
Singh
,
S.
,
Repaka
,
R.
, and
Al‐Jumaily
,
A.
,
2019
, “
Sensitivity Analysis of Critical Parameters Affecting the Efficacy of Microwave Ablation Using Taguchi Method
,”
Int. J. RF Microwave Comput.‐Aided Eng.
,
29
(
4
), p.
e21581
.10.1002/mmce.21581
21.
Singh
,
S.
, and
Melnik
,
R.
,
2020
, “
Domain Heterogeneity in Radiofrequency Therapies for Pain Relief: A Computational Study With Coupled Models
,”
Bioengineering
,
7
(
2
), p.
35
.10.3390/bioengineering7020035
22.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast. Phys. Sci. Solids
,
61
, pp.
1
48
.10.1023/A:1010835316564
23.
COMSOL Multiphysics, 2019, “COMSOL Multiphysics: Structural Mechanics Module User's Guide (Version: 5.5),” COMSOL Multiphysics, accessed Sept. 9, 2020, https://doc.comsol.com/5.5/doc/com.comsol.help.sme/Structural MechanicsModuleUsersGuide.pdf
24.
COMSOL, 2019, “COMSOL Multiphysics® v. 5.5,” COMSOL AB, Stockholm, Sweden, accessed Sept. 9, 2020, http://www.comsol.com
25.
Nguyen
,
D. M.
,
Qian
,
P.
,
Barry
,
T.
, and
McEwan
,
A.
,
2020
, “
The Region-of-Interest Based Measurement Selection Process for Electrical Impedance Tomography in Radiofrequency Cardiac Ablation With Known Anatomical Information
,”
Biomed. Signal Process. Control
,
56
, p.
101706
.10.1016/j.bspc.2019.101706
26.
Irastorza
,
R. M.
,
Gonzalez-Suarez
,
A.
,
Pérez
,
J. J.
, and
Berjano
,
E.
,
2020
, “
Differences in Applied Electrical Power Between Full Thorax Models and Limited-Domain Models for RF Cardiac Ablation
,”
Int. J. Hyperthermia
,
37
(
1
), pp.
677
687
.10.1080/02656736.2020.1777330
You do not currently have access to this content.