Abstract

Advancement of implanted left ventricular assist device (LVAD) technology includes modern sensing and control methods to enable online diagnostics and monitoring of patients using on-board sensors. These methods often rely on a cardiovascular system (CVS) model, the parameters of which must be identified for the specific patient. Some of these, such as the systemic vascular resistance (SVR), can be estimated online while others must be identified separately. This paper describes a three-staged approach for designing a parameter identification algorithm (PIA) for this problem. The approach is demonstrated using a two-element Windkessel model of the systemic circulation (SC) with a time-varying elastance for the left ventricle (LV). A parameter identifiability stage is followed by identification using an unscented Kalman filter (UKF), which uses measurements of LV pressure (Plv), aortic pressure (Pao), aortic flow (Qa), and known input measurement of LVAD flowrate (Qvad). Both simulation and experimental data from animal experiments were used to evaluate the presented methods. By bounding the initial guess for left ventricular volume, the identified CVS model is able to reproduce signals of Plv, Pao, and Qa within a normalized root mean squared error (nRMSE) of 5.1%, 19%, and 11%, respectively, during simulations. Experimentally, the identified model is able to estimate SVR with an accuracy of 3.4% compared with values from invasive measurements. Diagnostics and physiological control algorithms on-board modern LVADs could use CVS models other than those shown here, and the presented approach is easily adaptable to them. The methods also demonstrate how to test the robustness and accuracy of the identification algorithm.

References

1.
Virani
,
S. S.
,
Alonso
,
A.
,
Benjamin
,
E. J.
,
Bittencourt
,
M. S.
,
Callaway
,
C. W.
,
Carson
,
A. P.
,
Chamberlain
,
A. M.
, et al.,
2020
, “
Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association
,”
Circulation
,
141
(
9
), pp.
E139
E596
.10.1161/CIR.0000000000000757
2.
Prinzing
,
A.
,
Herold
,
U.
,
Berkefeld
,
A.
,
Krane
,
M.
,
Lange
,
R.
, and
Voss
,
B.
,
2016
, “
Left Ventricular Assist Devices—Current State and Perspectives
,”
J. Thorac. Dis.
,
8
(
8
), pp.
E660
E666
.10.21037/jtd.2016.07.13
3.
Ruchti
,
T. L.
,
Brown
,
R. H.
,
Jeutter
,
D. C.
, and
Feng
,
X.
,
1993
, “
Identification Algorithm for Systemic Arterial Parameters With Application to Total Artificial Heart Control
,”
Ann. Biomed. Eng.
,
21
(
3
), pp.
221
236
.10.1007/BF02368178
4.
Yu
,
Y. C.
,
Boston
,
R.
,
Simaan
,
M. A.
, and
Antaki
,
J. F.
,
2001
, “
Minimally Invasive Estimation of Systemic Vascular Parameters
,”
Ann. Biomed. Eng.
,
29
(
7
), pp.
595
606
.10.1114/1.1380420
5.
Wu
,
Y.
,
Allaire
,
P. E.
,
Tao
,
G.
, and
Olsen
,
D.
,
2007
, “
Modeling, Estimation, and Control of Human Circulatory System With a Left Ventricular Assist Device
,”
IEEE Trans. Control Syst. Technol.
,
15
(
4
), pp.
754
767
.10.1109/TCST.2006.890288
6.
Rapp
,
E. S.
,
Pawar
,
S. R.
,
Gohean
,
J. R.
,
Larson
,
E. R.
,
Smalling
,
R. W.
, and
Longoria
,
R. G.
,
2019
, “
Estimation of Systemic Vascular Resistance Using Built-In Sensing From an Implanted Left Ventricular Assist Device
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
2
(
4
), p.
041008
.10.1115/1.4045204
7.
AlOmari
,
A.-H. H.
,
Savkin
,
A. V.
,
Stevens
,
M.
,
Mason
,
D. G.
,
Timms
,
D. L.
,
Salamonsen
,
R. F.
, and
Lovell
,
N. H.
,
2013
, “
Developments in Control Systems for Rotary Left Ventricular Assist Devices for Heart Failure Patients: A Review
,”
Physiol. Meas.
,
34
(
1
), pp.
R1
R27
.10.1088/0967-3334/34/1/R1
8.
Pauls
,
J. P.
,
Stevens
,
M. C.
,
Bartnikowski
,
N.
,
Fraser
,
J. F.
,
Gregory
,
S. D.
, and
Tansley
,
G.
,
2016
, “
Evaluation of Physiological Control Systems for Rotary Left Ventricular Assist Devices: An In-Vitro Study
,”
Ann. Biomed. Eng.
,
44
(
8
), pp.
2377
2387
.10.1007/s10439-016-1552-3
9.
Noordergraaf
,
A.
,
1978
,
Circulatory System Dynamics
,
Academic Press
,
New York
.
10.
Westerhof
,
N.
,
Lankhaar
,
J. W.
, and
Westerhof
,
B. E.
,
2009
, “
The Arterial Windkessel
,”
Med. Biol. Eng. Comput.
,
47
(
2
), pp.
131
141
.10.1007/s11517-008-0359-2
11.
Suga
,
H.
, and
Sagawa
,
K.
,
1974
, “
Instantaneous Pressure-Volume Relationships and Their Ratio in the Excised, Supported Canine Left Ventricle
,”
Circ. Res.
,
35
(
1
), pp.
117
126
.10.1161/01.RES.35.1.117
12.
Gohean
,
J. R.
,
George
,
M. J.
,
Pate
,
T. D.
,
Kurusz
,
M.
,
Longoria
,
R. G.
, and
Smalling
,
R. W.
,
2013
, “
Verification of a Computational Cardiovascular System Model Comparing the Hemodynamics of a Continuous Flow to a Synchronous Valveless Pulsatile Flow Left Ventricular Assist Device
,”
ASAIO J.
,
59
(
2
), pp.
107
116
.10.1097/MAT.0b013e31827db6d4
13.
Avanzolini
,
G.
,
Barbini
,
P.
,
Cappello
,
A.
, and
Massai
,
M. R.
,
1989
, “
Sensitivity Analysis of the Systemic Circulation With a View to Computer Simulation and Parameter Estimation
,”
J. Biomed. Eng.
,
11
(
1
), pp.
43
47
.10.1016/0141-5425(89)90164-7
14.
Parlikar
,
T. A.
,
Heldt
,
T.
,
Ranade
,
G. V.
, and
Verghese
,
G. C.
,
2007
, “
Model-Based Estimation of Cardiac Output and Total Peripheral Resistance
,”
2007 Computers in Cardiology
, Durnham, NC, Sept. 30–Oct. 3, pp.
379
382
.10.1109/CIC.2007.4745501
15.
Vandenberghe
,
S.
,
Segers
,
P.
,
Steendijk
,
P.
,
Meyns
,
B.
,
Dion
,
R. A.
,
Antaki
,
J. F.
, and
Verdonck
,
P.
,
2006
, “
Modeling Ventricular Function During Cardiac Assist: Does Time-Varying Elastance Work?
,”
ASAIO J.
,
52
(
1
), pp.
4
8
.10.1097/01.mat.0000196525.56523.b8
16.
Lennart
,
L.
,
1999
,
System Identification: Theory for the User
,
PTR Prentice Hall
,
Upper Saddle River, NJ
, pp.
1
14
.
17.
Boston
,
J. R.
,
Antaki
,
J. F.
, and
Simaan
,
M. A.
,
2003
, “
Hierarchical Control of Heart-Assist Devices
,”
IEEE Rob. Autom. Mag.
,
10
(
1
), pp.
54
64
.10.1109/MRA.2003.1191711
18.
Avanzolini
,
G.
,
Barbini
,
P.
, and
Cappello
,
A.
,
1992
, “
Comparison of Algorithms for Tracking Short-Term Changes in Arterial Circulation Parameters
,”
IEEE Trans. Biomed. Eng.
,
39
(
8
), pp.
861
867
.10.1109/10.148394
19.
Shishido
,
T.
,
Hayashi
,
K.
,
Shigemi
,
K.
,
Sato
,
T.
,
Sugimachi
,
M.
, and
Sunagawa
,
K.
,
2000
, “
Single-Beat Estimation of End-Systolic Elastance Using Bilinearly Approximated Time-Varying Elastance Curve
,”
Circulation
,
102
(
16
), pp.
1983
1989
.10.1161/01.CIR.102.16.1983
20.
Clark
,
J. W.
,
Ling
,
R. Y.
,
Srinivasan
,
R.
,
Cole
,
J. S.
, and
Pruett
,
R. C.
,
1980
, “
A Two-Stage Identification Scheme for the Determination of the Parameters of a Model of Left Heart and Systemic Circulation
,”
IEEE Trans. Biomed. Eng.
,
27
(
1
), pp.
20
29
.10.1109/TBME.1980.326687
21.
Chang
,
K.-C.
, and
Kuo
,
T.-S.
,
1997
, “
Single-Beat Estimation of the Ventricular Pumping Mechanics in Terms of the Systolic Elastance and Resistance
,”
J. Theor. Biol.
,
189
(
1
), pp.
89
95
.10.1006/jtbi.1997.0498
22.
Sunagawa
,
K.
,
Yamada
,
A.
,
Senda
,
Y.
,
Kikuchi
,
Y.
,
Nakamura
,
M.
,
Shibahara
,
T.
, and
Nose
,
Y.
,
1980
, “
Estimation of the Hydromotive Source Pressure From Ejecting Beats of the Left Ventricle
,”
IEEE Trans. Biomed. Eng.
,
27
(
6
), pp.
299
305
.10.1109/TBME.1980.326737
23.
Deswysen
,
B. A.
,
1977
, “
Parameter Estimation of a Simple Model of the Left Ventricle and of the Systemic Vascular Bed, With Particular Attention to the Physical Meaning of the Left Ventricular Parameters
,”
IEEE Trans. Biomed. Eng.
,
24
(
1
), pp.
29
38
.10.1109/TBME.1977.326205
24.
Guarini
,
M.
,
Urzua
,
J.
,
Cipriano
,
A.
, and
Gonzalez
,
W.
,
1998
, “
Estimation of Cardiac Function From Computer Analysis of the Arterial Pressure Waveform
,”
IEEE Trans. Biomed. Eng.
,
45
(
12
), pp.
1420
1428
.10.1109/10.730436
25.
Wan
,
E. A.
, and
Van Der Merwe
,
R.
,
2000
, “
The Unscented Kalman Filter for Nonlinear Estimation
,”
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium
, Lake Louise, AB, Canada, Oct. 4,
pp.
153
158
.10.1109/ASSPCC.2000.882463
26.
Grewal
,
M.
, and
Glover
,
K.
,
1976
, “
Identifiability of Linear and Nonlinear Dynamical Systems
,”
IEEE Trans. Autom. Control
,
21
(
6
), pp.
833
837
.10.1109/TAC.1976.1101375
27.
Yao
,
K. Z.
,
Shaw
,
B. M.
,
Kou
,
B.
,
McAuley
,
K. B.
, and
Bacon
,
D. W.
,
2003
, “
Modeling Ethylene/Butene Copolymerization With Multi-Site Catalysts: Parameter Estimability and Experimental Design
,”
Polym. React. Eng.
,
11
(
3
), pp.
563
588
.10.1081/PRE-120024426
28.
Yu
,
Y. C.
,
1998
, “
Minimally Invasive Estimation of Cardiovascular Parameters
,” Ph.D. thesis,
University of Pittsburgh
,
Pittsburgh, PA
.
29.
Letsou
,
G. V.
,
Pate
,
T. D.
,
Gohean
,
J. R.
,
Kurusz
,
M.
,
Longoria
,
R. G.
,
Kaiser
,
L.
, and
Smalling
,
R. W.
,
2010
, “
Improved Left Ventricular Unloading and Circulatory Support With Synchronized Pulsatile Left Ventricular Assistance Compared With Continuous-Flow Left Ventricular Assistance in an Acute Porcine Left Ventricular Failure Model
,”
J. Thorac. Cardiovasc. Surg.
,
140
(
5
), pp.
1181
1188
.10.1016/j.jtcvs.2010.03.043
You do not currently have access to this content.