Electrospun nanofibers have been utilized in many biomedical applications as biomimetics of extracellular matrix proteins that promote self-organization of cells into 3D tissue constructs. As progress toward an artificial salivary gland tissue construct, we prepared nanofiber scaffolds using PLGA, which is a biodegradable and biocompatible material. We used electrospinning to prepare nanofiber scaffolds using poly(lactic-co-glycolic acid) (PLGA) with both dimethylformamide (DMF) and hexafluoroisopropanol (HFIP) as solvents. Using a design of experiment approach, the system and process parameters were optimized concurrently, and their effects on the diameter of the resulting fibers were computed into a single model. A transfer function was used to reproducibly produce nanofibers of a defined diameter, which was confirmed by a scanning electron microscope. The salivary gland cell line was seeded on the nanofiber scaffolds, and morphology, cell proliferation, and viability were assayed. Varying two or more parameters simultaneously yielded trends diverging from the linear response predicted by previous studies. Comparison of two solvents revealed that the diameter of PLGA nanofibers generated using HFIP is less sensitive to changes in the system and process parameters than are fibers generated using DMF. Inclusion of NaCl reduced morphological inconsistencies and minimized process variability. The resulting nanofiber scaffolds supported attachment, survival, and cell proliferation of a mouse salivary gland epithelial cell line. In comparison with glass and flat PLGA films, the nanofibers promoted self-organization of the salivary gland cells into 3D cell clusters, or aggregates. These data indicate that nanofiber scaffolds promote salivary gland cell organization, and suggest that a nanofiber scaffold could provide a platform for engineering of an artificial salivary gland tissue construct. This study additionally provides a method for efficient production of nanofiber scaffolds for general application in tissue engineering.

1.
Delaleu
,
N.
,
Jonsson
,
R.
, and
Koller
,
M. M.
, 2005, “
Sjogren’s Syndrome
,”
Eur. J. Oral Sci.
0909-8836,
113
(
2
), pp.
101
113
.
2.
Bhide
,
S. A.
,
Miah
,
A. B.
,
Harrington
,
K. J.
,
Newbold
,
K. L.
, and
Nutting
,
C. M.
, 2009, “
Radiation-Induced Xerostomia: Pathophysiology, Prevention and Treatment
,”
Clin. Oncol. (R Coll. Radiol)
0936-6555,
21
(
10
), pp.
737
744
.
3.
Nauntofte
,
B.
, and
Pedersen
,
A. M.
, 2001, “
Primary Sjogren’s Syndrome: Oral Aspects on Pathogenesis, Diagnostic Criteria, Clinical Features and Approaches for Therapy
,”
Expert Opin. Pharmacother.
,
2
(
9
), pp.
1415
1436
.
4.
Napenas
,
J. J.
,
Brennan
,
M. T.
, and
Fox
,
P. C.
, 2009, “
Diagnosis and Treatment of Xerostomia (Dry Mouth)
,”
Odontology
1618-1247,
97
(
2
), pp.
76
83
.
5.
Mese
,
H.
, and
Matsuo
,
R.
, 2007, “
Salivary Secretion, Taste and Hyposalivation
,”
J. Oral Rehabil.
0305-182X,
34
(
10
), pp.
711
723
.
6.
Sreebny
,
L. M.
, and
Schwartz
,
S. S.
, 1997, “
A Reference Guide to Drugs and Dry Mouth—2nd Edition
,”
Gerodontology
0734-0664,
14
(
1
), pp.
33
47
.
7.
Kagami
,
H.
,
Wang
,
S.
, and
Hai
,
B.
, 2008, “
Restoring the Function of Salivary Glands
,”
Oral Dis.
1354-523X,
14
(
1
), pp.
15
24
.
8.
Smith
,
L. A.
, and
Ma
,
P. X.
, 2004, “
Nano-Fibrous Scaffolds for Tissue Engineering
,”
Colloids Surf.
0166-6622,
39
(
3
), pp.
125
131
.
9.
Li
,
W. J.
,
Laurencin
,
C. T.
,
Caterson
,
E. J.
,
Tuan
,
R. S.
, and
Ko
,
F. K.
, 2002, “
Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering
,”
J. Biomed. Mater. Res.
0021-9304,
60
(
4
), pp.
613
621
.
10.
Ma
,
P. X.
, and
Zhang
,
R.
, 1999, “
Synthetic Nano-Scale Fibrous Extracellular Matrix
,”
J. Biomed. Mater. Res.
0021-9304,
46
(
1
), pp.
60
72
.
11.
Ma
,
Z.
,
Kotaki
,
M.
,
Inai
,
R.
, and
Ramakrishna
,
S.
, 2005, “
Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds
,”
Tissue Eng.
1076-3279,
11
(
1–2
), pp.
101
109
.
12.
Andrews
,
K. D.
,
Feugier
,
P.
,
Black
,
R. A.
, and
Hunt
,
J. A.
, 2008, “
Vascular Prostheses: Performance Related to Cell-Shear Responses
,”
J. Surg. Res.
0022-4804,
149
(
1
), pp.
39
46
.
13.
Andrews
,
K. D.
, and
Hunt
,
J. A.
, 2008, “
Upregulation of Matrix and Adhesion Molecules Induced by Controlled Topography
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
19
(
4
), pp.
1601
1608
.
14.
Curtis
,
A.
, and
Wilkinson
,
C.
, 1999, “
New Depths in Cell Behaviour: Reactions of Cells to Nanotopography
,”
Biochem. Soc. Symp.
0067-8694,
65
, pp.
15
26
.
15.
Gogolewski
,
S.
, and
Mainil-Varlet
,
P.
, 1997, “
Effect of Thermal Treatment on Sterility, Molecular and Mechanical Properties of Various Polylactides
,”
Biomaterials
0142-9612,
18
, pp.
251
255
.
16.
Curtis
,
A. S.
,
Casey
,
B.
,
Gallagher
,
J. O.
,
Pasqui
,
D.
,
Wood
,
M. A.
, and
Wilkinson
,
C. D.
, 2001, “
Substratum Nanotopography and the Adhesion of Biological Cells. Are Symmetry or Regularity of Nanotopography Important?
,”
Biophys. Chem.
0301-4622,
94
(
3
), pp.
275
283
.
17.
Dalby
,
M. J.
,
Riehle
,
M. O.
,
Yarwood
,
S. J.
,
Wilkinson
,
C. D.
, and
Curtis
,
A. S.
, 2003, “
Nucleus Alignment and Cell Signaling in Fibroblasts: Response to a Micro-Grooved Topography
,”
Exp. Cell Res.
0014-4827,
284
(
2
), pp.
272
280
.
18.
Vasita
,
R.
, and
Katti
,
D. S.
, 2006, “
Growth Factor-Delivery Systems for Tissue Engineering: A Materials Perspective
,”
Expert Rev. Med. Devices
,
3
(
1
), pp.
29
47
.
19.
Curtis
,
A. S.
,
Gadegaard
,
N.
,
Dalby
,
M. J.
,
Riehle
,
M. O.
,
Wilkinson
,
C. D.
, and
Aitchison
,
G.
, 2004, “
Cells React to Nanoscale Order and Symmetry in Their Surroundings
,”
IEEE Trans. Nanobiosci.
1536-1241,
3
(
1
), pp.
61
65
.
20.
Dalby
,
M. J.
,
Gadegaard
,
N.
,
Riehle
,
M. O.
,
Wilkinson
,
C. D.
, and
Curtis
,
A. S.
, 2004, “
Investigating Filopodia Sensing Using Arrays of Defined Nano-Pits Down to 35 nm Diameter in Size
,”
Int. J. Biochem. Cell Biol.
1357-2725,
36
(
10
), pp.
2005
2015
.
21.
Dalby
,
M. J.
,
Biggs
,
M. J.
,
Gadegaard
,
N.
,
Kalna
,
G.
,
Wilkinson
,
C. D.
, and
Curtis
,
A. S.
, 2007, “
Nanotopographical Stimulation of Mechanotransduction and Changes in Interphase Centromere Positioning
,”
J. Cell. Biochem.
0730-2312,
100
(
2
), pp.
326
338
.
22.
Dalby
,
M. J.
,
Gadegaard
,
N.
,
Herzyk
,
P.
,
Sutherland
,
D.
,
Agheli
,
H.
,
Wilkinson
,
C. D.
, and
Curtis
,
A. S.
, 2007, “
Nanomechanotransduction and Interphase Nuclear Organization Influence on Genomic Control
,”
J. Cell. Biochem.
0730-2312,
102
(
5
), pp.
1234
1244
.
23.
Breckenridge
,
L. J.
,
Wilson
,
R. J.
,
Connolly
,
P.
,
Curtis
,
A. S.
,
Dow
,
J. A.
,
Blackshaw
,
S. E.
, and
Wilkinson
,
C. D.
, 1995, “
Advantages of Using Microfabricated Extracellular Electrodes for In Vitro Neuronal Recording
,”
J. Neurosci. Res.
0360-4012,
42
(
2
), pp.
266
276
.
24.
Oh
,
S.
,
Brammer
,
K. S.
,
Li
,
Y. S.
,
Teng
,
D.
,
Engler
,
A. J.
,
Chien
,
S.
, and
Jin
,
S.
, 2009, “
Stem Cell Fate Dictated Solely by Altered Nanotube Dimension
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
106
(
7
), pp.
2130
2135
.
25.
Jose
,
M. V.
,
Thomas
,
V.
,
Dean
,
D. R.
, and
Nyairo
,
E.
, 2009, “
Fabrication and Characterization of Aligned Nanofibrous PLGA/Collagen Blends as Bone Tissue Scaffolds
,”
Polymer
0032-3861,
50
, pp.
3778
3785
.
26.
Andriano
,
K. P.
,
Tabata
,
Y.
,
Ikada
,
Y.
, and
Heller
,
J.
, 1999, “
In Vitro and In Vivo Comparison of Bulk and Surface Hydrolysis in Absorbable Polymer Scaffolds for Tissue Engineering
,”
J. Biomed. Mater. Res.
0021-9304,
48
(
5
), pp.
602
612
.
27.
Ramchandani
,
M.
, and
Robinson
,
D.
, 1998, “
In Vitro and In Vivo Release of Ciprofloxacin From PLGA 50:50 Implants
,”
J. Controlled Release
0168-3659,
54
(
2
), pp.
167
175
.
28.
You
,
Y.
,
Jin Lee
,
S.
,
Min
,
B. -M.
, and
Park
,
W. H.
, 2006, “
Effect of Solution Properties on Nanofibrous Structure of Electrospun Poly(Lactic-Co-Glycolic Acid)
,”
J. Appl. Polym. Sci.
0021-8995,
99
(
3
), pp.
1214
1221
.
29.
Wang
,
N.
, and
Wu
,
X. S.
, 1997, “
Synthesis, Characterization, Biodegradation, and Drug Delivery Application of Biodegradable Lactic/Glycolic Acid Oligomers: Part II. Biodegradation and Drug Delivery Application
,”
Journal of Biomaterials Science
,
9
(
1
), pp.
75
87
.
30.
Hohman
,
M. M.
,
Shin
,
M.
,
Rutledge
,
G.
, and
Brenner
,
M. E.
, 2001, “
Electrospinning and Electrically Forced Jets. II Applications
,”
Phys. Fluids
1070-6631,
13
, pp.
2221
2236
.
31.
Jayaraman
,
K.
,
Kotaki
,
M.
, and
Zhang
,
Y.
, 2004, “
Recent Advances in Polymer Nanofibers
,”
J. Nanosci. Nanotechnol.
1533-4880,
4
, pp.
52
65
.
32.
Hohman
,
M. M.
,
Shin
,
M.
,
Rutledge
,
G.
, and
Brenner
,
M. E.
, 2001, “
Electrospinning and Electrically Forced Jets I. Stability Theory
,”
Phys. Fluids
1070-6631,
13
, pp.
2201
2220
.
33.
Yarin
,
A. L.
,
Koombhongse
,
S.
, and
Reneker
,
D. H.
, 2001, “
Taylor Cone and Jetting From Liquid Droplets in Electrospinning of Nanofibers
,”
J. Appl. Phys.
0021-8979,
90
, pp.
4836
4846
.
34.
Doshi
,
J.
, and
Reneker
,
D. H.
, 1995, “
Electrospinning Process and Application of Electrospun Fibers
,”
J. Electrost.
0304-3886,
35
, pp.
151
160
.
35.
Vasita
,
R.
, and
Katti
,
D. S.
, 2006, “
Nanofibers and Their Applications in Tissue Engineering
,”
Nanomedicine
1743-5889,
1
(
1
), pp.
15
30
.
36.
Zong
,
X.
,
Kim
,
K.
,
Fang
,
D.
,
Ran
,
S.
,
Hsiao
,
B. S.
, and
Chu
,
B.
, 2002, “
Structure and Process Relationship of Electrospun Biodegradable Nanofiber Membranes
,”
Polymer
0032-3861,
43
, pp.
4403
4412
.
37.
Laoide
,
B. M.
,
Courty
,
Y.
,
Gastinne
,
I.
,
Thibaut
,
C.
,
Kellermann
,
O.
, and
Rougeon
,
F.
, 1996, “
Immortalised Mouse Submandibular Epithelial Cell Lines Retain Polarised Structural and Functional Properties
,”
J. Cell. Sci.
0021-9533,
109
(
Pt 12
), pp.
2789
2800
.
38.
Deitzel
,
J. M.
,
Kleinmeyer
,
J.
,
Harris
,
D.
, and
Beck Tan
,
N. C.
, 2001, “
The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles
,”
Polymer
0032-3861,
42
, pp.
261
272
.
39.
Huang
,
Z. -M.
,
Zhang
,
Y. -Z.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
, 2003, “
A Review on Polymer Nanofibers by Electrospinning and Their Appications in Nanocomposites
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
2223
2253
.
40.
Zong
,
X.
,
Ran
,
S.
,
Fang
,
D.
,
Hsiao
,
B. S.
, and
Chu
,
B.
, 2003, “
Control of Structure, Morphology and Property in Electrospun Poly(Glycolide-Co-Lactide) Non-Woven Membranes via Post-Draw Treatments
,”
Polymer
0032-3861,
44
, pp.
4959
4967
.
41.
Schneider
,
O. D.
,
Loher
,
S.
,
Brunner
,
T. J.
,
Uebersax
,
L.
,
Simonet
,
M.
,
Grass
,
R. N.
,
Merkle
,
H. P.
, and
Stark
,
W. J.
, 2008, “
Cotton Wool-Like Nanocomposite Biomaterials Prepared by Electrospinning: In Vitro Bioactivity and Osteogenic Differentiation of Human Mesenchymal Stem Cells
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
84B
, pp.
350
362
.
42.
Zong
,
X.
,
Ran
,
S.
,
Kim
,
K. S.
,
Fang
,
D.
,
Hsiao
,
B. S.
, and
Chu
,
B.
, 2003, “
Structure and Morphology Changes During In Vitro Degradation of Electrospun Poly(Glycolide-Co-Lactide) Nanofiber Membrane
,”
Biomacromolecules
1525-7797,
4
(
2
), pp.
416
423
.
43.
Wei
,
C.
,
Larsen
,
M.
,
Hoffman
,
M. P.
, and
Yamada
,
K. M.
, 2007, “
Self-Organization and Branching Morphogenesis of Primary Salivary Epithelial Cells
,”
Tissue Eng.
1076-3279,
13
, pp.
721
735
.
You do not currently have access to this content.