Free vibration of single- and double-layered graphene sheets is investigated by employing nonlocal continuum theory and molecular dynamics simulations. Results show that the classical elastic model overestimated the resonant frequencies of the sheets by a percentage as high as 62%. The dependence of small-scale effects, sizes of sheets, boundary conditions, and number of layers on vibrational characteristic of single- and double-layered graphene sheets is studied. The resonant frequencies predicted by the nonlocal elastic plate theory are verified by the molecular dynamics simulations, and the nonlocal parameter is calibrated through the verification process. The simulation results reveal that the calibrated nonlocal parameter depends on boundary conditions and vibrational modes. The nonlocal plate model is found to be indispensable in vibration analysis of grapheme sheets with a length less than 8 nm on their sides.

1.
Kroto
,
H. W.
,
Heath
,
J. R.
,
O’Brien
,
S. C.
,
Curl
,
R. F.
, and
Smalley
,
R. E.
, 1985, “
C60: Buckminsterfullerene
,”
Nature (London)
0028-0836,
318
(
6042
), pp.
162
163
.
2.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
(
6348
), pp.
56
58
.
3.
Kong
,
X. Y.
,
Ding
,
Y.
,
Yang
,
R.
, and
Wang
,
Z. L.
, 2004, “
Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar-Nanobelts
,”
Science
0036-8075,
303
(
5662
), pp.
1348
1351
.
4.
Schedin
,
F.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Hill
,
E. W.
,
Blake
,
P.
,
Katsnelson
,
M. I.
, and
Novoselov
,
K. S.
, 2007, “
Detection of Individual Gas Molecules Adsorbed on Graphene
,”
Nature Mater.
1476-1122,
6
(
9
), pp.
652
655
.
5.
Bunch
,
J. S.
,
van der Zande
,
A. M.
,
Verbridge
,
S. S.
,
Frank
,
I. W.
,
Tanenbaum
,
D. M.
,
Parpia
,
J. M.
,
Craighead
,
H. G.
, and
McEuen
,
P. L.
, 2007, “
Electromechanical Resonators From Graphene Sheets
,”
Science
0036-8075,
315
(
5811
), pp.
490
493
.
6.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H. B.
,
Kohlhaas
,
K. M.
,
Zimney
,
E. J.
,
Stach
,
E. A.
,
Piner
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
, 2006, “
Graphene-Based Composite Materials
,”
Nature (London)
0028-0836,
442
(
7100
), pp.
282
286
.
7.
Iijima
,
S.
,
Brabec
,
C.
,
Maiti
,
A.
, and
Bernholc
,
J.
, 1996, “
Structural Flexibility of Carbon Nanotubes
,”
J. Chem. Phys.
0021-9606,
104
(
5
), pp.
2089
2092
.
8.
Hernández
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
, 1998, “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
80
(
20
), pp.
4502
4505
.
9.
Sánchez-Portal
,
D.
,
Artacho
,
E.
,
Soler
,
J. M.
,
Rubio
,
A.
, and
Ordejón
,
P.
, 1999, “
Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
59
(
19
), pp.
12678
12688
.
10.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1997, “
High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
8
(
4
), pp.
341
348
.
11.
Liew
,
K. M.
,
Wong
,
C. H.
,
He
,
X. Q.
,
Tan
,
M. J.
, and
Meguid
,
S. A.
, 2004, “
Nanomechanics of Single and Multi-Walled Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
69
(
11
), p.
115429
.
12.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2006, “
Elastic Wave Velocities in Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0556-2805,
73
(
24
), p.
245407
.
13.
Bodily
,
B. H.
, and
Sun
,
C. T.
, 2003, “
Structural and Equivalent Continuum Properties of Single-Walled Carbon Nanotubes
,”
Int. J. Mater. Prod. Technol.
0268-1900,
18
(
46
), pp.
381
397
.
14.
Li
,
C.
, and
Chou
,
T. W.
, 2003, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
40
(
10
), pp.
2487
2499
.
15.
Li
,
C.
, and
Chou
,
T. W.
, 2003, “
Single-Walled Nanotubes as Ultrahigh Frequency Nanomechanical Oscillators
,”
Phys. Rev. B
0556-2805,
68
(
7
), p.
073405
.
16.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
(
14
), pp.
2511
2514
.
17.
Krishnan
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
T. W.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
, 1998, “
Young’s Modulus of Singled-Walled Nanotubes
,”
Phys. Rev. B
0556-2805,
58
(
20
), pp.
14013
14019
.
18.
Parnes
,
R.
, and
Chiskis
,
A.
, 2002, “
Buckling of Nano-Fiber Reinforced Composites: A Reexamination of Elastic Buckling
,”
J. Mech. Phys. Solids
0022-5096,
50
(
4
), pp.
855
879
.
19.
Wang
,
X.
,
Yang
,
H. K.
, and
Dong
,
K.
, 2005, “
Torsional Buckling of Multi-Walled Carbon Nanotubes
,”
Mater. Sci. Eng., A
0921-5093,
404
(
1–2
), pp.
314
322
.
20.
Duan
,
W. H.
,
Wang
,
Q.
,
Wang
,
Q.
, and
Liew
,
K. M.
, 2010, “
Modeling the Instability of Carbon Nanotubes: From Continuum Mechanics to Molecular Dynamics
,”
J. Nanotechnol. Eng. Med.
1949-2944,
1
(
1
), p.
011001
.
21.
Wang
,
Q.
, and
Varadan
,
V. K.
, 2006, “
Wave Characteristics of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
43
(
2
), pp.
254
265
.
22.
Liew
,
K. M.
, and
Wang
,
Q.
, 2007, “
Analysis of Wave Propagation in Carbon Nanotubes via Elastic Shell Theories
,”
Int. J. Eng. Sci.
0020-7225,
45
(
2–8
), pp.
227
241
.
23.
Sun
,
C.
, and
Liu
,
K.
, 2007, “
Vibration of Multi-Walled Carbon Nanotubes With Initial Axial Loading
,”
Solid State Commun.
0038-1098,
143
(
4–5
), pp.
202
207
.
24.
Kitipornchai
,
S.
,
He
,
X. Q.
, and
Liew
,
K. M.
, 2005, “
Continuum Model for the Vibration of Multilayered Graphene Sheets
,”
Phys. Rev. B
0556-2805,
72
(
7
), p.
075443
.
25.
Liew
,
K. M.
,
He
,
X. Q.
, and
Kitipornchai
,
S.
, 2006, “
Predicting Nanovibration of Multi-Layered Graphene Sheets Embedded in an Elastic Matrix
,”
Acta Mater.
1359-6454,
54
(
16
), pp.
4229
4236
.
26.
He
,
X. Q.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2005, “
Resonance Analysis of Multi-Layered Graphene Sheets as Nanoscale Resonators
,”
Nanotechnology
0957-4484,
16
(
10
), pp.
2086
2091
.
27.
Behfar
,
K.
, and
Naghdabadi
,
R.
, 2005, “
Nanoscale Vibrational Analysis of a Multi-Layered Graphene Sheet Embedded in an Elastic Medium
,”
Compos. Sci. Technol.
0266-3538,
65
(
7–8
), pp.
1159
1164
.
28.
Hu
,
Y. -G.
,
Liew
,
K. M.
,
Wang
,
Q.
,
He
,
X. Q.
, and
Yakobson
,
B. I.
, 2008, “
Nonlocal Shell Model for Elastic Wave Propagation in Single- and Double-Walled Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
56
(
12
), pp.
3475
3485
.
29.
Eringen
,
A. C.
, 1976,
Nonlocal Polar Field Models
,
Academic
,
New York
.
30.
Eringen
,
A. C.
, 1983, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
0021-8979,
54
(
9
), pp.
4703
4710
.
31.
Peddieson
,
J.
,
Buchanan
,
G. R.
, and
McNitt
,
R. P.
, 2003, “
Application of Nonlocal Continuum Models to Nanotechnology
,”
Int. J. Eng. Sci.
0020-7225,
41
(
3–5
), pp.
305
312
.
32.
Sudak
,
L. J.
, 2003, “
Column Buckling of Multiwalled Carbon Nanotubes Using Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
0021-8979,
94
(
11
), pp.
7281
7287
.
33.
Wang
,
Q.
,
Varadan
,
V. K.
, and
Quek
,
S. T.
, 2006, “
Small Scale Effect on Elastic Buckling of Carbon Nanotubes With Nonlocal Continuum Models
,”
Phys. Lett. A
0375-9601,
357
(
2
), pp.
130
135
.
34.
Wang
,
Q.
, 2005, “
Wave Propagation in Carbon Nanotubes via Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
0021-8979,
98
(
12
), p.
124301
.
35.
Wang
,
Q.
, and
Varadan
,
V. K.
, 2007, “
Application of Nonlocal Elastic Shell Theory in Wave Propagation Analysis of Carbon Nanotubes
,”
Smart Mater. Struct.
0964-1726,
16
(
1
), pp.
178
190
.
36.
Arash
,
B.
, and
Ansari
,
R.
, 2010, “
Evaluation of Nonlocal Parameter in the Vibrations of Single-Walled Carbon Nanotubes With Initial Strain
,”
Physica E (Amsterdam)
1386-9477,
42
(
8
), pp.
2058
2064
.
37.
Wang
,
Q.
, and
Liew
,
K. M.
, 2007, “
Application of Nonlocal Continuum Mechanics to Static Analysis of Micro- and Nano-Structures
,”
Phys. Lett. A
0375-9601,
363
(
3
), pp.
236
242
.
38.
Gibson
,
R. F.
,
Ayorinde
,
O. E.
, and
Wen
,
Y. -F.
, 2007, “
Vibration of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
0266-3538,
67
(
1
), pp.
1
28
.
39.
Pradhan
,
S. C.
, and
Phadikar
,
J. K.
, 2009, “
Small Scale Effect on Vibration of Embedded Multilayered Graphene Sheets Based on Nonlocal Continuum Models
,”
Phys. Lett. A
0375-9601,
373
(
11
), pp.
1062
1069
.
40.
Pradhan
,
S. C.
, and
Phadikar
,
J. K.
, 2009, “
Nonlocal Elasticity Theory for Vibration of Nanoplates
,”
J. Sound Vib.
0022-460X,
325
(
1–2
), pp.
206
223
.
41.
Shen
,
L.
,
Shen
,
H. -S.
, and
Zhang
,
C. -L.
, 2010, “
Nonlocal Plate Model for Nonlinear Vibration of Single Layer Graphene Sheets in Thermal Environments
,”
Comput. Mater. Sci.
0927-0256,
48
(
3
), pp.
680
685
.
42.
Ansari
,
R.
,
Rajabiehfard
,
R.
, and
Arash
,
B.
, 2010, “
Nonlocal Finite Element Model for Vibrations of Embedded Multi-Layered Graphene Sheets
,”
Comput. Mater. Sci.
0927-0256,
49
(
4
), pp.
831
838
.
43.
Ansari
,
R.
,
Sahmani
,
S.
, and
Arash
,
B.
, 2010, “
Nonlocal Plate Model for Free Vibrations of Single-Layered Graphene Sheets
,”
Phys. Lett. A
0375-9601,
375
(
1
), pp.
53
62
.
44.
Wang
,
Q.
, and
Wang
,
C. M.
, 2007, “
The Constitutive Relation and Small Scale Parameter of Nonlocal Continuum Mechanics for Modelling Carbon Nanotubes
,”
Nanotechnology
0957-4484,
18
(
7
), p.
075702
.
45.
Reddy
,
J. N.
, 1997,
Mechanics of Laminated Composite Plates, Theory and Analysis
,
Chemical Rubber Company
,
Boca Raton, FL
.
46.
Sherbourne
,
A. N.
, and
Pandey
,
M. D.
, 1991, “
Differential Quadrature Method in the Buckling Analysis of Beams and Composite Plates
,”
Compos. Struct.
0263-8223,
40
(
4
), pp.
903
913
.
47.
Shu
,
C.
, 2000,
Differential Quadrature and Its Application in Engineering
,
Springer
,
Berlin
.
48.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
, 2002, “
A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
0953-8984,
14
(
4
), pp.
783
802
.
49.
Lennard-Jones
,
J. E.
, 1924, “
The Determination of Molecular Fields: From the Variation of the Viscosity of a Gas With Temperature
,”
Proc. R. Soc.
,
106A
, pp.
441
453
.
50.
Moller
,
M. A.
,
Tildesley
,
D. J.
,
Kim
,
K. S.
, and
Quirke
,
N.
, 1991, “
Molecular Dynamics Simulation of a Langmuir–Blodgett Film
,”
J. Chem. Phys.
0021-9606,
94
(
12
), pp.
8390
8401
.
51.
Hoover
,
W. G.
, 1985, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
1050-2947,
31
(
3
), pp.
1695
1697
.
You do not currently have access to this content.