Shockwave is a high pressure and short duration pulse that induce damage and lead to progressive collapse of the structure. The shock load excites high-frequency vibrational modes and causes failure due to large deformation in the structure. Shockwave experiments were conducted by imparting repetitive localized shock loads to create progressive damage states in the structure. Two-phase novel damage detection algorithm is proposed, that quantify and segregate perturbative damage from microscale damage. The first phase performs dimension reduction and damage state segregation using principal component analysis (PCA). In the second phase, the embedding dimension was reduced through empirical mode decomposition (EMD). The embedding parameters were derived using singular system analysis (SSA) and average mutual information function (AMIF). Based, on Takens theorem and embedding parameters, the response was represented in a multidimensional phase space trajectory (PST). The dissimilarity in the multidimensional PST was used to derive the damage sensitive features (DSFs). The DSFs namely: (i) change in phase space topology (CPST) and (ii) Mahalanobis distance between phase space topology (MDPST) are evaluated to quantify progressive damage states. The DSFs are able to quantify the occurrence, magnitude, and localization of progressive damage state in the structure. The proposed algorithm is robust and efficient to detect and quantify the evolution of damage state for extreme loading scenarios.

References

1.
Shelke
,
A.
,
Kundu
,
T.
,
Amjad
,
U.
,
Hahn
,
K.
, and
Grill
,
W.
,
2011
, “
Mode-Selective Excitation and Detection of Ultrasonic Guided Waves for Delamination Detection in Laminated Aluminum Plates
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
58
(
3
), pp. 567–577.
2.
Wandowski
,
T.
,
Malinowski
,
P.
, and
Ostachowicz
,
W.
,
2011
, “
Damage Detection With Concentrated Configurations of Piezoelectric Transducers
,”
Smart Mater. Struct.
,
20
(
2
), p.
025002
.
3.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
,
1998
, “
A Summary Review of Vibration-Based Damage Identification Methods
,”
Shock Vib. Dig.
,
30
(
2
), pp.
91
105
.
4.
Farrar
,
C. R.
, and
Worden
,
K.
,
2007
, “
An Introduction to Structural Health Monitoring
,”
Philos. Trans. R. Soc. London A
,
365
(
1851
), pp.
303
315
.
5.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hemez
,
F. M.
, and
Czarnecki
,
J. J.
,
2002
, “
A Review of Structural Health Review of Structural Health Monitoring Literature 1996–2001
,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-UR-02-2095
.https://digital.library.unt.edu/ark:/67531/metadc927238/
6.
Sohn
,
H.
, and
Farrar
,
C. R.
,
2001
, “
Damage Diagnosis Using Time Series Analysis of Vibration Signals
,”
Smart Mater. Struct.
,
10
(
3
), pp.
446
451
.
7.
Taha
,
M. R.
,
Noureldin
,
A.
,
Lucero
,
J.
, and
Baca
,
T.
,
2006
, “
Wavelet Transform for Structural Health Monitoring: A Compendium of Uses and Features
,”
Struct. Health Monit.
,
5
(
3
), pp.
267
295
.
8.
Andreaus
,
U.
,
Baragatti
,
P.
,
Casini
,
P.
, and
Iacoviello
,
D.
,
2017
, “
Experimental Damage Evaluation of Open and Fatigue Cracks of Multi‐Cracked Beams by Using Wavelet Transform of Static Response Via Image Analysis
,”
Struct. Control Health Monit.
,
24
(
4
), pp. 1–16.
9.
Yang
,
J. N.
,
Lei
,
Y.
,
Lin
,
S.
, and
Huang
,
N.
,
2004
, “
Hilbert-Huang Based Approach for Structural Damage Detection
,”
J. Eng. Mech.
,
130
(
1
), pp.
85
95
.
10.
Lu
,
Y.
, and
Gao
,
F.
,
2005
, “
A Novel Time-Domain Auto-Regressive Model for Structural Damage Diagnosis
,”
J. Sound Vib.
,
283
(
3–5
), pp.
1031
1049
.
11.
Bodeux
,
J. B.
, and
Golinval
,
J. C.
,
2001
, “
Application of ARMAV Models to the Identification and Damage Detection of Mechanical and Civil Engineering Structures
,”
Smart Mater. Struct.
,
10
(
3
), pp.
479
489
.
12.
Yang
,
H.
,
Xu
,
F.
,
Ma
,
J.
, and
Huang
,
K.
,
2018
, “
Strain Modal-Based Damage Identification Method and Its Application to Crane Girder Without Original Model
,”
Proc. Inst. Mech. Eng., Part C
, (in press).
13.
Kullaa
,
J.
,
2003
, “
Damage Detection of the Z24 Bridge Using Control Charts
,”
Mech. Syst. Signal Process.
,
17
(
1
), pp.
163
170
.
14.
Worden
,
K.
,
Manson
,
G.
, and
Fieller
,
N. R.
,
2000
, “
Damage Detection Using Outlier Analysis
,”
J. Sound Vib.
,
229
(
3
), pp.
647
667
.
15.
Beck
,
J. L.
, and
Katafygiotis
,
L. S.
,
1998
, “
Updating Models and Their Uncertainties I Bayesian Statistical Framework
,”
J. Eng. Mech.
,
124
(
4
), pp.
455
461
.
16.
Rocchetta
,
R.
,
Broggi
,
M.
,
Huchet
,
Q.
, and
Patelli
,
E.
,
2018
, “
On-Line Bayesian Model Updating for Structural Health Monitoring
,”
Mech. Syst. Signal Process.
,
103
, pp.
174
195
.
17.
Mosavi
,
A. A.
,
Dickey
,
D.
,
Seracino
,
R.
, and
Rizkalla
,
S.
,
2012
, “
Identifying Damage Locations Under Ambient Vibrations Utilizing Vector Autoregressive Models and Mahalanobis Distances
,”
Mech. Syst. Signal Process.
,
26
, pp.
254
267
.
18.
Figueiredo
,
E.
,
Park
,
G.
,
Farrar
,
C. R.
,
Worden
,
K.
, and
Figueiras
,
J.
,
2011
, “
Machine Learning Algorithms for Damage Detection Under Operational and Environmental Variability
,”
Struct. Health Monit.
,
10
(
6
), pp.
559
572
.
19.
Gul
,
M.
, and
Catbas
,
F. N.
,
2009
, “
Statistical Pattern Recognition for Structural Health Monitoring Using Time Series Modeling: Theory and Experimental Verifications
,”
Mech. Syst. Signal Process.
,
23
(
7
), pp.
2192
2204
.
20.
Yeager
,
M.
,
Gregory
,
B.
,
Key
,
C.
, and
Todd
,
M.
,
2018
, “
On Using Robust Mahalanobis Distance Estimations for Feature Discrimination in a Damage Detection Scenario
,”
Struct. Health Monit.
, (in press).
21.
Liu
,
G.
,
Mao
,
Z.
,
Todd
,
M.
, and
Huang
,
Z.
,
2014
, “
Localization of Nonlinear Damage Using State-Space-Based Predictions Under Stochastic Excitation
,”
Smart Mater. Struct.
,
23
(
2
), p.
025036
.
22.
Żak
,
G.
,
Wyłomańska
,
A.
, and
Zimroz
,
R.
,
2017
, “
Local Damage Detection Method Based on Distribution Distances Applied to Time-Frequency Map of Vibration Signal
,”
2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives
(
SDEMPED
), Tinos, Greece, Aug. 29–Sept. 1, pp.
134
140
.
23.
Mclachlan
,
G. J.
,
1999
, “
Mahalanobis Distance
,”
Resonance
,
4
(
6
), pp.
20
26
.
24.
Worden
,
K.
,
Farrar
,
C. R.
,
Haywood
,
J.
, and
Todd
,
M.
,
2008
, “
A Review of Nonlinear Dynamics Applications to Structural Health Monitoring
,”
Struct. Control Health Monit.
,
15
(
4
), pp.
540
567
.
25.
Peeters
,
M.
,
Viguie
,
R.
,
Serandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2009
, “
Nonlinear Normal Modes Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.
26.
Katkhuda
,
H.
, and
Haldar
,
A.
,
2008
, “
A Novel Health Assessment Technique With Minimum Information
,”
Struct. Control Health Monit.
,
15
(
6
), pp.
821
838
.
27.
Shlens
,
J.
,
2003
, “
A Tutorial on Principal Component Analysis: Derivation, Discussion and Singular Value Decomposition
,” accessed June 12 , 2018, https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
28.
Pozo
,
F.
, and
Vidal
,
Y.
,
2018
, “
Damage and Fault Detection of Structures Using Principal Component Analysis and Hypothesis Testing
,”
Advances in Principal Component Analysis
,
Springer
,
Singapore
, pp.
137
191
.
29.
Antoni
,
J.
,
2005
, “
Blind Separation of Vibration Components Principles and Demonstrations
,”
Mech. Syst. Signal Process.
,
19
(
6
), pp.
1166
1180
.
30.
Belouchrani
,
A.
,
Abed-Meraim
,
K.
,
Cardoso
,
J. F.
, and
Moulines
,
E.
,
1997
, “
A Blind Source Separation Technique Using Second-Order Statistics
,”
IEEE Trans. Signal Process.
,
45
(
2
), pp.
434
444
.
31.
Cichocki
,
A.
, and
Amari
,
S. I.
,
2003
,
Adaptive Blind Signal and Image Processing (New Revised and Improved Edition)
,
Wiley
,
New York
.
32.
Kerschen
,
G.
,
Poncelet
,
F.
,
Golinval
,
J. C.
,
Vakakis
,
A.
, and
Bergman
,
L.
,
2007
, “
A Identification of Linear and Nonlinear Systems Using Signal Processing Techniques
,”
26th Benelux Meeting on Systems and Control, Lommel
, Belgium, Mar. 13–15.
33.
Nichols
,
J.
,
Todd
,
M.
,
Seaver
,
M.
, and
Virgin
,
L.
,
2003
, “
Use of Chaotic Excitation and Attractor Property Analysis in Structural Health Monitoring
,”
Phys. Rev. E
,
67
(
1
), p.
016209
.
34.
Zhang
,
W.
,
Li
,
J.
,
Hao
,
H.
, and
Ma
,
H.
,
2017
, “
Damage Detection in Bridge Structures Under Moving Loads With Phase Trajectory Change of Multi-Type Vibration Measurements
,”
Mech. Syst. Signal Process.
,
87
, pp.
410
425
.
35.
Todd
,
M.
,
Nichols
,
J.
,
Pecora
,
L.
, and
Virgin
,
L.
,
2001
, “
Vibration-Based Damage Assessment Utilizing State Space Geometry Changes: Local Attractor Variance Ratio
,”
Smart Mater. Struct.
,
10
(
5
), pp.
1000
1008
.
36.
Liu
,
G.
,
Mao
,
Z.
, and
Todd
,
M.
,
2016
, “
Damage Detection Using Transient Trajectories in Phase-Space With Extended Random Decrement Technique Under Non-Stationary Excitations
,”
Smart Mater. Struct.
,
25
(
11
), p.
115014
.
37.
Chelidze
,
D.
, and
Liu
,
M.
,
2006
, “
Multidimensional Damage Identification Based on Phase Space Warping: An Experimental Study
,”
Nonlinear Dyn.
,
46
(
1–2
), pp.
61
72
.
38.
Alwasel
,
A.
,
Yung
,
M.
,
Abdel-Rahman
,
E. M.
,
Wells
,
R. P.
, and
Haas
,
C. T.
,
2017
, “
Fatigue Detection Using Phase-Space Warping
,”
ASME J. Biomech. Eng.
,
139
(
3
), p.
031001
.
39.
Nie
,
Z.
,
Hao
,
H.
, and
Ma
,
H.
,
2013
, “
Structural Damage Detection Based on the Reconstructed Phase Space for Reinforced Concrete Slab: Experimental Study
,”
J. Sound Vib.
,
332
(
4
), pp.
1061
1078
.
40.
Nie
,
Z.
,
Hao
,
H.
, and
Ma
,
H.
,
2012
, “
Using Vibration Phase Space Topology Changes for Structural Damage Detection
,”
Struct. Health Monit.
,
11
(
5
), pp.
538
557
.
41.
Hao
,
H.
,
Zhang
,
W.
,
Li
,
J.
, and
Ma
,
H.
,
2018
, “
Bridge Condition Assessment Under Moving Loads Using Multi-Sensor Measurements and Vibration Phase Technology
,”
Engineering Asset Management 2016
,
Springer
,
Cham, Switzerland
, pp.
73
84
.
42.
Nichols
,
J.
,
2003
, “
Structural Health Monitoring of Offshore Structures Using Ambient Excitation
,”
Appl. Ocean Res.
,
25
(
3
), pp.
101
114
.
43.
Paul
,
B.
,
George
,
R. C.
, and
Mishra
,
S. K.
,
2017
, “
Phase Space Interrogation of the Empirical Response Modes for Seismically Excited Structures
,”
Mech. Syst. Signal Process.
,
91
, pp.
250
265
.
44.
Takens
,
F.
,
1981
,
Detecting Strange Attractors in Turbulence
(Lecture Notes in Mathematics, Vol. 898), Springer, Berlin, pp. 366–381.
45.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(7), pp.
808
817
. http://www.jstor.org/stable/24103957
46.
Wall
,
M. E.
,
Rechtsteiner
,
A.
, and
Rocha
,
L. M.
,
2003
, “
Singular Value Decomposition and Principal Component Analysis
,”
A Practical Approach to Microarray Data Analysis
, Norwell, MA, pp.
91
109
.
47.
Mujica
,
L. E.
,
Vehí
,
J.
,
Ruiz
,
M.
,
Verleysen
,
M.
,
Staszewski
,
W.
, and
Worden
,
K.
,
2008
, “
Multivariate Statistics Process Control for Dimensionality Reduction in Structural Assessment
,”
Mech. Syst. Signal Process.
,
22
(
1
), pp.
155
171
.
48.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N. C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London A
,
454
(1971), pp.
903
995
.
49.
Huang
,
N. E.
,
Shen
,
Z.
, and
Long
,
S. R.
,
1999
, “
A New View of Nonlinear Water Waves: The Hilbert Spectrum 1
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
417
457
.
50.
Huang
,
N. E.
,
Wu
,
M.-L. C.
,
Long
,
S. R.
,
Shen
,
S. S.
,
Qu
,
W.
,
Gloersen
,
P.
, and
Fan
,
K. L.
,
2003
, “
A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis
,”
Proc. R. Soc. London A
,
459
(2037), pp.
2317
2345
.
51.
Li
,
H.
,
Deng
,
X.
, and
Dai
,
H.
,
2007
, “
Structural Damage Detection Using the Combination Method of EMD and Wavelet Analysis
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
298
306
.
52.
Abarbanel
,
H. D.
, and
Gollub
,
J. P.
,
1996
, “
Analysis of Observed Chaotic Data
,”
Phys. Today
,
49
(
11
), p.
86
.
53.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
(
2
), pp.
1134
1140
.
54.
Broomhead
,
D. S.
, and
King
,
G. P.
,
1986
, “
Extracting Qualitative Dynamics From Experimental Data
,”
Phys. D
,
20
(
2–3
), pp.
217
236
.
55.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H. D.
,
1992
, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), pp.
3403
3411
.
56.
Torkamani
,
S.
,
Butcher
,
E. A.
,
Todd
,
M. D.
, and
Park
,
G.
,
2012
, “
Hyperchaotic Probe for Damage Identification Using Nonlinear Prediction Error
,”
Mech. Syst. Signal Process.
,
29
, pp.
457
473
.
57.
Mahalanobis
,
P. C.
,
1936
, “
On the Generalised Distance in Statistics
,”
Proc. Natl. Inst. Sci. India
,
2
(1), pp.
49
55
.http://library.isical.ac.in:8080/jspui/bitstream/123456789/6765/1/Vol02_1936_1_Art05-pcm.pdf
58.
De Maesschalck
,
R.
,
Jouan-Rimbaud
,
D.
, and
Massart
,
D. L.
,
2000
, “
The Mahalanobis Distance
,”
Chemom. Intell. Lab. Syst.
,
50
(
1
), pp.
1
18
.
59.
Kore
,
R.
,
Waychal
,
A.
,
Agarwal
,
S.
,
Yadav
,
P.
,
Uddin
,
A.
,
Sahoo
,
N.
, and
Shelke
,
A.
,
2016
, “
Impact Induced Solitary Wave Propagation Through a Woodpile Structure
,”
Smart Mater. Struct.
,
25
(
2
), p.
025027
.
60.
Feeny
,
B.
, and
Liang
,
Y.
,
2003
, “
Interpreting Proper Orthogonal Modes of Randomly Excited Vibration Systems
,”
J. Sound Vib.
,
265
(
5
), pp.
953
966
.
61.
Yan
,
A.-M.
,
Kerschen
,
G.
,
De Boe
,
P.
, and
Golinval
,
J. C.
,
2005
, “
Structural Damage Diagnosis Under Varying Environmental Conditions—Part I: A Linear Analysis
,”
Mech. Syst. Signal Process.
,
19
(
4
), pp.
847
864
.
62.
Krishnan
,
M.
,
Bhowmik
,
B.
,
Tiwari
,
A.
, and
Hazra
,
B.
,
2017
, “
Online Damage Detection Using Recursive Principal Component Analysis and Recursive Condition Indicators
,”
Smart Mater. Struct.
,
26
(
8
), p. 085017.
You do not currently have access to this content.