Abstract

Ultrasound computed tomography (USCT) shows great promise in nondestructive evaluation and medical imaging due to its ability to quickly scan and collect data from a region of interest. However, existing approaches are a tradeoff between the accuracy of the prediction and the speed at which the data can be analyzed, and processing the collected data into a meaningful image requires both time and computational resources. We propose to develop convolutional neural networks (CNNs) to accelerate and enhance the inversion results to reveal underlying structures or abnormalities that may be located within the region of interest. For training, the ultrasonic signals were first processed using the full waveform inversion (FWI) technique for only a single iteration; the resulting image and the corresponding true model were used as the input and output, respectively. The proposed machine learning approach is based on implementing two-dimensional CNNs to find an approximate solution to the inverse problem of a partial differential equation-based model reconstruction. To alleviate the time-consuming and computationally intensive data generation process, a high-performance computing-based framework has been developed to generate the training data in parallel. At the inference stage, the acquired signals will be first processed by FWI for a single iteration; then the resulting image will be processed by a pre-trained CNN to instantaneously generate the final output image. The results showed that once trained, the CNNs can quickly generate the predicted wave speed distributions with significantly enhanced speed and accuracy.

References

1.
Fichtner
,
A.
, and
Trampert
,
J.
,
2011
, “
Resolution Analysis in Full Waveform Inversion
,”
Geophys. J. Int.
,
187
(
3
), pp.
1604
1624
.
2.
Warner
,
M.
,
Ratcliffe
,
A.
,
Nangoo
,
T.
,
Morgan
,
J.
,
Umpleby
,
A.
,
Shah
,
N.
,
Vinje
,
V.
,
Štekl
,
I.
,
Guasch
,
L.
,
Win
,
C.
, and
Conroy
,
G.
,
2013
, “
Anisotropic 3d Full-Waveform Inversion
,”
Geophysics
,
78
(
2
), pp.
R59
R80
.
3.
Loshelder
,
A.
,
He
,
J.
,
Aktharuzzaman
,
M.
,
Harb
,
M. S.
, and
Rao
,
J.
,
2023
, “
Apex-shifted Radon Transform for Baseline-subtraction-free (BSF) Damage Scattered Wave Extraction
,”
Struct. Health Monit.
,
13
.
4.
Song
,
G.
,
Li
,
H.
,
Gajic
,
Bosko
,
Zhou
,
W.
,
Chen
,
P.
, and
Gu
,
H.
,
2013
, “
Wind turbine blade health monitoring with piezoceramic-based wireless sensor network
,”
Int. J. Smart Nano Mater
,
4
(
3
), pp.
150
166
.
5.
Jardani
,
A.
,
Vu
,
T.
, and
Fischer
,
P.
,
2022
, “
Use of Convolutional Neural Networks With Encoder–Decoder Structure for Predicting the Inverse Operator in Hydraulic Tomography
,”
J. Hydrol.
,
604
, p.
127233
.
6.
Li
,
R.
,
Chen
,
H.
,
Peng
,
Y.
,
Li
,
J.
, and
Li
,
Y.
,
2020
, “
Ultrasound Computed Tomography of Knee Joint
,”
Chin. J. Electron.
,
29
(
4
), pp.
705
716
.
7.
Koulountzios
,
P.
,
Aghajanian
,
S.
,
Rymarczyk
,
T.
,
Koiranen
,
T.
, and
Soleimani
,
M.
,
2021
, “
An Ultrasound Tomography Method for Monitoring CO2 Capture Process Involving Stirring and CaCO3 Precipitation
,”
Sensors
,
21
(
21
), p.
6995
.
8.
He
,
J.
,
Rao
,
J.
,
Fleming
,
J. D.
,
Gharti
,
H. N.
,
Nguyen
,
L. T.
, and
Morrison
,
G.
,
2021
, “
Numerical Ultrasonic Full Waveform Inversion (FWI) for Complex Structures in Coupled 2D Solid/Fluid Media
,”
Smart Mater. Struct.
,
30
(
8
), p.
085044
.
9.
He
,
J.
,
Borisov
,
D.
,
Fleming
,
J. D.
, and
Kasemer
,
M.
,
2022
, “
Subsurface Polycrystalline Reconstruction Based on Full Waveform Inversion—A 2D Numerical Study
,”
Materialia
,
24
, p.
101482
.
10.
Prieux
,
V.
,
Lambaré
,
G.
,
Operto
,
S.
, and
Virieux
,
J.
,
2013
, “
Building Starting Models for Full Waveform Inversion From Wide-Aperture Data by Stereotomography
,”
Geophys. Prospecting
,
61
, pp.
109
137
.
11.
Louboutin
,
M.
,
Witte
,
P.
,
Lange
,
M.
,
Kukreja
,
N.
,
Luporini
,
F.
,
Gorman
,
G.
, and
Herrmann
,
F. J.
,
2017
, “
Full-Waveform Inversion, Part 1: Forward Modeling
,”
Leading Edge
,
36
(
12
), pp.
1033
1036
.
12.
Zhang
,
Z.
,
Wu
,
Z.
,
Wei
,
Z.
,
Mei
,
J.
,
Huang
,
R.
, and
Wang
,
P.
,
2020
, “
FWI Imaging: Full-Wavefield Imaging Through Full-Waveform Inversion
,”
SEG Technical Program Expanded Abstracts
,
Online
,
Oct. 11–16
.
13.
Tromp
,
J.
,
Tape
,
C.
, and
Liu
,
Q.
,
2005
, “
Seismic Tomography, Adjoint Methods, Time Reversal and Banana-Doughnut Kernels
,”
Geophys. J. Int.
,
160
(
1
), pp.
195
216
.
14.
Lin
,
Y.
,
Huang
,
L.
, and
Zhang
,
Z.
,
2012
, “
Ultrasound Waveform Tomography With the Total-Variation Regularization for Detection of Small Breast Tumors
,”
Medical Imaging 2012: Ultrasonic Imaging, Tomography, and Therapy
,
San Diego, CA
,
Feb. 4–9
, Vol. 8320, SPIE, pp.
13
21
.
15.
Robins
,
T.
,
2022
, “
Towards Ultrasound Full-Waveform Inversion in Medical Imaging
,” PhD thesis,
Imperial College London
,
London
.
16.
Perez-Liva
,
M.
,
Herraiz
,
J. L.
,
Udías
,
J. M.
,
Cox
,
B. T.
, and
Treeby
,
B. E.
,
2016
, “
Full-Wave Attenuation Reconstruction in the Time Domain for Ultrasound Computed Tomography
,”
IEEE 13th International Symposium on Biomedical Imaging (ISBI)
,
Prague, Czech Republic
,
Apr. 13–16
, IEEE, pp.
710
713
.
17.
Rao
,
J.
,
Ratassepp
,
M.
, and
Fan
,
Z.
,
2016
, “
Guided Wave Tomography Based on Full Waveform Inversion
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
63
(
5
), pp.
737
745
.
18.
He
,
J.
,
Rocha
,
D. C.
, and
Sava
,
P.
,
2020
, “
Guided Wave Tomography Based on Least-Squares Reverse-Time Migration
,”
Struct. Health Monit.
,
19
(
4
), pp.
1237
1249
.
19.
He
,
J.
,
Rocha
,
D. C.
,
Leser
,
P. E.
,
Sava
,
P.
, and
Leser
,
W. P.
,
2019
, “
Least-Squares Reverse Time Migration (LSRTM) for Damage Imaging Using Lamb Waves
,”
Smart Mater. Struct.
,
28
(
6
), p.
065010
.
20.
Van Leeuwen
,
T.
, and
Herrmann
,
F. J.
,
2013
, “
Mitigating Local Minima in Full-Waveform Inversion by Expanding the Search Space
,”
Geophys. J. Int.
,
195
(
1
), pp.
661
667
.
21.
Witte
,
P.
,
Louboutin
,
M.
,
Lensink
,
K.
,
Lange
,
M.
,
Kukreja
,
N.
,
Luporini
,
F.
,
Gorman
,
G.
, and
Herrmann
,
F. J.
,
2018
, “
Full-Waveform Inversion, Part 3: Optimization
,”
Leading Edge
,
37
(
2
), pp.
142
145
.
22.
Yao
,
G.
,
Wu
,
D.
, and
Wang
,
S.-X.
,
2020
, “
A Review on Reflection-Waveform Inversion
,”
Petroleum Sci.
,
17
(
2
), pp.
334
351
.
23.
Virieux
,
J.
,
Asnaashari
,
A.
,
Brossier
,
R.
,
Métivier
,
L.
,
Ribodetti
,
A.
, and
Zhou
,
W.
,
2017
, “An Introduction to Full Waveform Inversion,”
Encyclopedia of Exploration Geophysics
,
V.
Grechka
, and
K.
Wapenaar
, eds.,
Society of Exploration Geophysicists
,
Houston, TX
, p.
R1-1
.
24.
Commer
,
M.
, and
Newman
,
G. A.
,
2008
, “
New Advances in Three-Dimensional Controlled-Source Electromagnetic Inversion
,”
Geophys. J. Int.
,
172
(
2
), pp.
513
535
.
25.
Feng
,
Y.
,
Chen
,
Y.
,
Feng
,
S.
,
Jin
,
P.
,
Liu
,
Z.
, and
Lin
,
Y.
,
2022
, “
An Intriguing Property of Geophysics Inversion
,”
arXiv:2204.13731v2
. https://arxiv.org/abs/2204.13731
26.
Jin
,
K. H.
,
McCann
,
M. T.
,
Froustey
,
E.
, and
Unser
,
M.
,
2017
, “
Deep Convolutional Neural Network for Inverse Problems in Imaging
,”
IEEE Trans. Image Process.
,
26
(
9
), pp.
4509
4522
.
27.
Liu
,
Z.
,
Bicer
,
T.
,
Kettimuthu
,
R.
,
Gursoy
,
D.
,
De Carlo
,
F.
, and
Foster
,
I.
,
2020
, “
Tomogan: Low-Dose Synchrotron X-Ray Tomography With Generative Adversarial Networks: Discussion
,”
JOSA A
,
37
(
3
), pp.
422
434
.
28.
Liu
,
Z.
,
Sharma
,
H.
,
Park
,
J.-S.
,
Kenesei
,
P.
,
Miceli
,
A.
,
Almer
,
J.
,
Kettimuthu
,
R.
, and
Foster
,
I.
,
2022
, “
Braggnn: Fast X-Ray Bragg Peak Analysis Using Deep Learning
,”
IUCrJ
,
9
(
1
), pp.
104
113
.
29.
Wang
,
Y.-Q.
,
Wang
,
Q.
,
Lu
,
W.-K.
,
Ge
,
Q.
, and
Yan
,
X.-F.
,
2022
, “
Seismic Impedance Inversion Based on Cycle-Consistent Generative Adversarial Network
,”
Petroleum Sci.
,
19
(
1
), pp.
147
161
.
30.
Zhang
,
Z.
, and
Lin
,
Y.
,
2020
, “
Data-Driven Seismic Waveform Inversion: A Study on the Robustness and Generalization
,”
IEEE Trans. Geosci. Remote Sens.
,
58
(
10
), p.
10
.
31.
Wang
,
W.
,
McMechan
,
G. A.
, and
Ma
,
J.
,
2021
, “
Elastic Isotropic and Anisotropic Full-Waveform Inversions Using Automatic Differentiation for Gradient Calculations in a Framework of Recurrent Neural Networks
,”
Geophysics
,
86
(
6
), pp.
R795
R810
.
32.
Zhang
,
T.
,
Sun
,
J.
,
Innanen
,
K. A.
, and
Trad
,
D. O.
,
2021
, “
A Recurrent Neural Network for ℓ1 Anisotropic Viscoelastic Full-Waveform Inversion With High-Order Total Variation Regularization
,”
First International Meeting for Applied Geoscience & Energy Expanded Abstracts
,
Denver, CO
,
Sept. 26–Oct. 1
, pp.
1374
1378
.
33.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Physics Informed Deep Learning (Part I): Data-Driven Solutions of Nonlinear Partial Differential Equations
,”
arXiv:1711.10561v1
. https://arxiv.org/abs/1711.10561v1
34.
Song
,
C.
, and
Alkhalifah
,
T. A.
,
2021
, “
Wavefield Reconstruction Inversion Via Physics-Informed Neural Networks
,”
IEEE Trans. Geosci. Remote Sens.
,
60
, pp.
1
12
.
35.
Robins
,
T.
,
Camacho
,
J.
,
Agudo
,
O. C.
,
Herraiz
,
J. L.
, and
Guasch
,
L.
,
2021
, “
Deep-Learning-Driven Full-Waveform Inversion for Ultrasound Breast Imaging
,”
Sensors
,
21
(
13
), p.
4570
.
36.
Feigin
,
M.
,
Makovsky
,
Y.
,
Freedman
,
D.
, and
Anthony
,
B. W.
,
2020
, “
High-Frequency Full-Waveform Inversion With Deep Learning for Seismic and Medical Ultrasound Imaging
,”
SEG Technical Program Expanded Abstracts 2020
,
Online
,
Oct. 11–16
, pp.
3492
3496
.
37.
Bader
,
K. B.
,
Crowe
,
M. J.
,
Raymond
,
J. L.
, and
Holland
,
C. K.
,
2016
, “
Effect of Frequency-Dependent Attenuation on Predicted Histotripsy Waveforms in Tissue-Mimicking Phantoms
,”
Ultrasound Med. Biol.
,
42
(
7
), pp.
1701
1705
.
38.
Donaldson
,
R. W.
, and
He
,
J.
,
2021
, “
Instantaneous Ultrasound Computed Tomography Using Deep Convolutional Neural Networks
,”
SPIE Smart Structures + Nondestructive Evaluation
,
Online
,
Mar. 22–27
, Vol. 11593, SPIE, pp.
396
405
.
39.
Prasad
,
S.
, and
Almekkawy
,
M.
,
2022
, “
DL-UCT: A Deep Learning Framework for Ultrasound Computed Tomography
,”
IEEE International Symposium on Biomedical Imaging
,
Kolkata, India
,
Mar. 28–31
, IEEE, pp.
1
5
.
40.
Bozdağ
,
E.
,
Peter
,
D.
,
Lefebvre
,
M.
,
Komatitsch
,
D.
,
Tromp
,
J.
,
Hill
,
J.
,
Podhorszki
,
N.
, and
Pugmire
,
D.
,
2016
, “
Global Adjoint Tomography: First-Generation Model
,”
Geophys. J. Int.
,
207
(
3
), pp.
1739
1766
.
41.
Zhang
,
W.
,
Gao
,
J.
,
Gao
,
Z.
, and
Chen
,
H.
,
2020
, “
Adjoint-Driven Deep-Learning Seismic Full-Waveform Inversion
,”
IEEE Trans. Geosci. Remote Sens.
,
59
(
10
), pp.
8913
8932
.
42.
Tarantola
,
A.
,
1984
, “
Inversion of Seismic Reflection Data in the Acoustic Approximation: Geophysics
,”
Geophysics
,
49
(
8
), pp.
1259
1266
.
43.
Bozdağ
,
E.
,
Trampert
,
J.
, and
Tromp
,
J.
,
2011
, “
Misfit Functions for Full Waveform Inversion Based on Instantaneous Phase and Envelope Measurements
,”
Geophys. J. Int.
,
185
(
2
), pp.
845
870
.
44.
Tromp
,
J.
,
Komatitsch
,
D.
, and
Liu
,
Q.
,
2008
, “
Spectral-Element and Adjoint Methods in Seismology
,”
Commun. Comput. Phys.
,
3
(
1
), pp.
1
32
.
45.
Modrak
,
R. T.
,
Borisov
,
D.
,
Lefebvre
,
M.
, and
Tromp
,
J.
,
2018
, “
Seisflows-Flexible Waveform Inversion Software
,”
Comput. Geosci.
,
115
, pp.
88
95
.
46.
Virieux
,
J.
, and
Operto
,
S.
,
2009
, “
An Overview of Full-Waveform Inversion in Exploration Geophysics
,”
Geophysics
,
74
(
6
), pp.
WCC1
WCC26
.
47.
Sun
,
J.
,
Niu
,
Z.
,
Innanen
,
K. A.
,
Li
,
J.
, and
Trad
,
D. O.
,
2020
, “
A Theory-Guided Deep-Learning Formulation and Optimization of Seismic Waveform Inversion
,”
Geophysics
,
85
(
2
), pp.
R87
R99
.
48.
Arridge
,
S.
, and
Hauptmann
,
A.
,
2020
, “
Networks for Nonlinear Diffusion Problems in Imaging
,”
J. Math. Imag. Vis.
,
62
(
3
), pp.
471
487
.
49.
Eckels
,
J. D.
,
Fernandez
,
I. F.
,
Ho
,
K.
,
Dervilis
,
N.
,
Jacobson
,
E. M.
, and
Wachtor
,
A. J.
,
2022
, “Application of a U-Net Convolutional Neural Network to Ultrasonic Wavefield Measurements for Defect Characterization,”
Rotating Machinery, Optical Methods & Scanning LDV Methods
, Vol.
6
,
D.
Di Maio
, and
J.
Bagersad
, eds.,
Springer
,
Cham, Switzerland
, pp.
167
181
.
50.
Tao
,
X.
,
Gao
,
H.
,
Shen
,
X.
,
Wang
,
J.
, and
Jia
,
J.
,
2018
, “
Scale-Recurrent Network for Deep Image Deblurring
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Salt Lake City, UT
,
June 18–23
, pp.
8174
8182
.
51.
Tian
,
C.
,
Xu
,
Y.
,
Zuo
,
W.
,
Zhang
,
B.
,
Fei
,
L.
, and
Lin
,
C.-W.
,
2020
, “
Coarse-to-Fine CNN for Image Super-Resolution
,”
IEEE Trans. Multimedia
,
23
, pp.
1489
1502
.
52.
Xu
,
B.
,
Wang
,
N.
,
Chen
,
T.
, and
Li
,
M.
,
2015
, “
Empirical Evaluation of Rectified Activations in Convolutional Network
,”
arXiv:1505.00853v2
. https://arxiv.org/abs/1505.00853v2
53.
Dubey
,
A. K.
, and
Jain
,
V.
,
2019
, “Comparative Study of Convolution Neural Network’s Relu and Leaky-Relu Activation Functions,”
Applications of Computing, Automation and Wireless Systems in Electrical Engineering
,
S.
Mishra
,
Y. R.
Sood
, and
A.
Tomar
, eds.,
Springer
,
Singapore
, pp.
873
880
.
54.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-Net: Convolutional Networks for Biomedical Image Segmentation
,”
Medical Image Computing and Computer-Assisted Intervention – MICCAI
,
Munich, Germany
,
Oct. 5–9
, Springer, pp.
234
241
.
You do not currently have access to this content.