Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Aircraft structures are required to have a high level of quality to satisfy their need for light weight, efficient flight, and withstanding high loads over their lifespan. These aerostructures are typically made from a composite material due to their good tensile strength and resistance to compression. To ensure their structural integrity, the composite material requires inspection for common flaws such as porosity, delaminations, voids, foreign object debris, and other defects. Ultrasonic testing (UT) is a popular non-destructive inspection (NDI) technique used for effectively evaluating the composite material. Current inspection methods rely heavily on human experience and are extremely time consuming. Therefore, there is a need for the development of techniques to reduce the manual inspection time. This work compares the performance of different deep learning-based methods in the identification and classification of defects. Deep learning has shown great promise in numerous fields, and we show its effectiveness in the evaluation of the composite aerostructure material. The methods developed here are both highly reliable with a top recall value of 98.64% as well as extremely efficient requiring an average of 4 s during the inferencing stage to evaluate new composites. Finally, we investigate model robustness to concept drift by measuring its performance over time.

References

1.
Giurgiutiu
,
V.
,
2016
,
Introduction
,
Academic Press
,
London
.
2.
Ibrahim
,
M.
,
2014
, “
Nondestructive Evaluation of Thick-Section Composites and Sandwich Structures: A Review.
Appl. Sci. Manuf.
,
64
, pp.
36
48
.
3.
Wang
,
B.
,
Zhong
,
S.
,
Lee
,
T. L.
,
Fancey
,
K. S.
, and
Mi
,
J.
,
2020
, “
Non-destructive Testing and Evaluation of Composite Materials/Structures: A State-of-the-Art Review.
,”
Adv. Mech. Eng.
,
12
(
4
).
4.
Felice
,
M. V.
, and
Fan
,
Z.
,
2018
, “
Sizing of Flaws Using Ultrasonic Bulk Wave Testing: A Review
,”
Ultrasonics
,
88
, pp.
26
42
.
5.
Zhang
,
G.
,
2000
, “
Neural Networks for Classification: A Survey
,”
IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
,
30
(
4
), pp.
451
462
.
6.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2017
,
Deep Learning
,
The MIT Press
,
London
.
7.
Ferregut
,
C. M.
,
Osegueda
,
R. A.
, and
Ortiz
,
J.
,
1995
, “
Artificial Neural Networks for Structural Damage Detection and Classification
,”
Smart Structures and Materials 1995: Smart Materials
,
San Diego, CA
,
April 1995
.
8.
Ye
,
J.
,
Ito
,
S.
, and
Toyama
,
N.
,
2018
, “
Computerized Ultrasonic Imaging Inspection: From Shallow to Deep Learning
,”
Sensors
,
18
(
11
), p.
3820
.
9.
Saeed
,
N.
,
King
,
N.
,
Said
,
Z.
, and
Omar
,
M. A.
,
2019
, “
Automatic Defects Detection in CFRP Thermograms, Using Convolutional Neural Networks and Transfer Learning
,”
Infrared Phys. Technol.
,
102
, p.
103048
.
10.
Virkkunen
,
I.
,
Koskinen
,
T.
,
Jessen-Juhler
,
O.
, and
Rinta-Aho
,
J.
,
2021
, “
Augmented Ultrasonic Data for Machine Learning
,”
J. Nondestruct. Eval.
,
40
(
1
), p.
4
.
11.
Hu
,
C.
,
Duan
,
Y.
,
Liu
,
S.
,
Yan
,
Y.
,
Tao
,
N.
,
Osman
,
A.
,
Ibarra-Castanedo
,
C.
,
Sfarra
,
S.
,
Chen
,
D.
, and
Zhang
,
C.
,
2019
, “
LSTM-RNN-Based Defect Classification in Honeycomb Structures Using Infrared Thermography
,”
Infrared Phys. Technol.
,
102
, p.
103032
.
12.
ASTM E2553
,
2017
, “Standard Guide for Nondestructive Examination of Polymer Matrix Composites Used in Aerospace Applications.”
13.
Yunker
,
A.
,
Lake
,
R.
,
Kettimuthu
,
R.
, and
Kral
,
Z.
,
2023
, “
Comparative Study on Deep Learning Methods for Defect Identification and Classification in Composite Aerostructure Material
,”
Quantitative Nondestructive Evaluation
,
Austin, TX
, Vol. 87202, American Society of Mechanical Engineers.
14.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
,
2009
,
Discrete-Time Signal Processing
, 3rd ed.,
Prentice Hall Press
,
Princeton, NJ
.
15.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
Medical Image Computing and Computer-Assisted Intervention
,”
MICCAI 2015
,
Munich, Germany
,
Oct. 5–9
.
16.
Cicek
,
O.
,
Abdulkadir
,
A.
,
Lienkamp
,
S. S.
,
Brox
,
T.
, and
Ronneberger
,
O.
,
2014
, “
Nondestructive Evaluation of Thick-Section Composites and Sandwich Structures: A Review
,”
Appl. Sci. Manuf.
,
64
, pp.
36
48
.
17.
Niyas
,
S.
,
Pawan
,
S.
,
Anand Kumar
,
M.
, and
Rajan
,
J.
,
2022
, “
Medical Image Segmentation With 3D Convolutional Neural Networks: A Survey
,”
Neurocomputing
,
493
, pp.
397
413
.
18.
Bai
,
S.
,
Kolter
,
J. Z.
, and
Koltun
,
V.
,
2018
, “
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
,”
arXiv e-prints
. https://arxiv.org/abs/1803.01271
19.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L.
, and
Polosukhin
,
I.
,
2017
,
Proceedings of the 31st International Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Curran Associates Inc.
, pp.
6000
6011
.
20.
McCulloch
,
W.
, and
Pitts
,
W.
,
1943
, “
A Logical Calculus of the Ideas Immanent in Nervous Activity
,”
Bull. Math. Biophys.
,
9
(
2
), pp.
115
133
.
21.
Schlimmer
,
J. C.
, and
Granger
,
R. H.
,
1986
, “
Incremental Learning From Noisy Data
,”
Mach. Learn.
,
1
(
3
), pp.
317
354
.
22.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al.,
2019
,
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,
Curran Associates Inc.
,
Red Hook, NY
.
23.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “Adam: A Method for Stochastic Optimization,”
arXiv e-prints
https://arxiv.org/abs/1412.6980
24.
Radford
,
A.
,
Kim
,
J. W.
,
Hallacy
,
C.
,
Ramesh
,
A.
,
Goh
,
G.
,
Agarwal
,
S.
, and
Sastry
,
G.
,
2021
,
Proceedings of the 38th International Conference on Machine Learning
, Vol.
139
,
PMLR
, pp.
8748
8763
.
You do not currently have access to this content.