Abstract

The high temperature gas-cooled reactor (HTGR) has advantages for irradiation applications such as large space available for irradiation at reflector region and high thermal neutron spectrum with the graphite moderator. High temperature engineering test reactor (HTTR), a prismatic type of the HTGR, has been constructed to establish and upgrade the basic technologies for the HTGRs. Many irradiation regions are reserved in the HTTR to be served as a potential tool for an irradiation test reactor in order to promote innovative basic researches such as materials, fusion reactor technology, and radiation chemistry. This study shows the overview of some possible irradiation applications at the HTTRs including neutron transmutation doping silicon (NTD-Si) and Iodine-125 (125I) productions. The HTTR has possibility to produce about 40 tons of doped Si-particles per year for fabrication of spherical silicon solar cell. Besides, the HTTR could also produce about 1.8 × 105 GBq/yr of 125I isotope, comparing to 3.0 × 103 GBq of total 125I supplied in Japan in 2016.

References

1.
Ho
,
H. Q.
,
Honda
,
Y.
,
Motoyama
,
M.
,
Hamamoto
,
S.
,
Ishii
,
T.
, and
Ishitsuka
,
E.
,
2018
, “
Proposal of a Neutron Transmutation Doping Facility for n-Type Spherical Silicon Solar Cell at High-Temperature Engineering Test Reactor
,”
Appl. Radiat. Isotope
,
135
, pp.
12
18
.10.1016/j.apradiso.2018.01.005
2.
Ho
,
H. Q.
,
Honda
,
Y.
,
Hamamoto
,
S.
,
Ishii
,
T.
,
Fujimoto
,
N.
, and
Ishitsuka
,
E.
,
2018
, “
Feasibility Study of Large-Scale Production of Iodine-125 at the High Temperature Engineering Test Reactor
,”
Appl. Radiat. Isotope
,
140
, pp.
209
214
.10.1016/j.apradiso.2018.07.024
3.
Nagaya
,
Y.
,
Okumura
,
K.
,
Mori
,
T.
, and
Nakagawa
,
M.
,
2005
, “
MVP/GMVP II: General Purpose Monte Carlo Codes for Neutron and Photon Transport Calculations Based on Continuous Energy and Multigroup Methods
,” Japan Atomic Energy Research Institute, Ibaraki, Japan, p.
388
, Report No. JAERI 1348.
4.
Shibata
,
K.
,
Iwamoto
,
O.
,
Nakagawa
,
T.
,
Iwamoto
,
N.
,
Ichihara
,
A.
,
Kunieda
,
S.
,
Chiba
,
S.
,
Furutaka
,
K.
,
Otuka
,
N.
,
Ohsawa
,
T.
,
Murata
,
T.
,
Matsunobu
,
H.
,
Zukeran
,
A.
,
Kamada
,
S.
, and
Katakura
,
J.
,
2011
, “
JENDL-4.0: A New Library for Nuclear Science and Engineering
,”
J. Nucl. Sci. Technol.
,
48
(
1
), pp.
1
30
.10.1080/18811248.2011.9711675
5.
Minemoto
,
T.
, and
Takakura
,
H.
,
2007
, “
Fabrication of Spherical Silicon Crystals by Dropping Method and Their Application to Solar Cells
,”
Jpn. Soc. Appl. Phys.
,
46
(
7A
), pp.
4016
4020
.10.1143/JJAP.46.4016
6.
Mihailetchi
,
V. D.
,
Coletti
,
G.
,
Komatsu
,
Y.
,
Geerligs
,
L. J.
,
Kvande
,
R.
,
Arnberg
,
L.
,
Wambach
,
K.
,
Knopf
,
C.
,
Kopecek
,
R.
, and
Weeber
,
A. W.
,
2008
, “
Large Area and Screen Printed n-Type Silicon Solar Cells With Efficiency Exceeding 18%
,”
23rd European Photovoltaic Solar Energy Conference and Exhibition
, Valencia, Spain, Sept. 1–5, pp.
1036
1039
.
7.
Lark-Horovitz
,
K.
,
1951
,
Semi-Conducting Materials
,
Academic Press
,
New York
, pp.
41
70
.
8.
Tanenbaum
,
M.
, and
Mills
,
A. D.
,
1961
, “
Preparation of Uniform Resistivity n-Type Silicon by Nuclear Transmutation
,”
J. Electrochem. Soc.
,
108
(
2
), pp.
171
176
.10.1149/1.2428036
9.
Kim
,
H. S.
,
Pyeon
,
C. H.
,
Lim
,
J. Y.
, and
Misawa
,
T.
,
2012
, “
Effects of Silicon Cross Section and Neutron Spectrum on the Radial Uniformity in Neutron Transmutation Doping
,”
Appl. Radiat. Isot.
,
70
(
1
), pp.
133
138
.10.1016/j.apradiso.2011.08.006
10.
Kim
,
H. S.
,
Oh
,
S. Y.
,
Jun
,
B. J.
, Kim, M. S., Seo, C. G., and Kim H. I.,
2006
, “
Design of a Neutron Screen for 6-inch Neutron Transmutation Doping in H
anaro,”
Nucl. Eng. Technol.
,
38
(
7
), pp.
675
680
. https://www.researchgate.net/publication/263623668_DESIGN_OF_A_NEUTRON_SCREEN_FOR_6-INCH_NEUTRON_TRANSMUTATION_DOPING_IN_HANARO
11.
Komeda
,
M.
,
Arai
,
M.
,
Tamai
,
K.
, and
Kawasaki
,
K.
,
2016
, “
Design and Burn-Up Analyses of New Type Holder for Silicon Neutron Transmutation Doping
,”
Appl. Radiat. Isot.
,
113
, pp.
60
65
.10.1016/j.apradiso.2016.04.014
12.
Komeda
,
M.
,
Kawasaki
,
K.
, and
Obara
,
T.
,
2013
, “
A New Irradiation Method With a Neutron Filter for Silicon Neutron Transmutation Doping at the Japan Research Reactor (No. 3) (JRR-3)
,”
Appl. Radiat. Isot.
,
74
, pp.
70
77
.10.1016/j.apradiso.2013.01.005
13.
IAEA
,
2013
, “
Neutron Transmutation Doping of Silicon at Research Reactors
,” International Atomic Energy Agency, Vienna, Austria, p.
95
, Document No. IAEA-TECDOC-1681.
14.
Herod
,
M. N.
,
Cornett
,
R. J.
,
Clark
,
I. D.
,
Kieser
,
W. E.
, and
Jean
,
G. S.
,
2014
, “
Extraction of 129I and 127I Via Combustion From Organic Rich Samples Using 125I as a Quantitative Tracer
,”
J. Environ. Radioactivity
,
138
, pp.
323
330
.10.1016/j.jenvrad.2014.02.005
15.
Metyko
,
J.
,
Erwin
,
W.
, and
Landsberger
,
S.
,
2016
, “
Verification of I-125 Brachytherapy Source Strength for Use in Radioactive Seed Localization Procedures
,”
Appl. Radiat. Isot.
,
112
, pp.
62
68
.10.1016/j.apradiso.2016.03.006
16.
Saxena
,
S. K.
,
Sharma
,
S. D.
,
Dash
,
A.
, and
Venkatesh
,
M.
,
2009
, “
Development of a New Design 125I-Brachytherapy Seed for Its Application in the Treatment of Eye and Prostate Cancer
,”
Appl. Radiat. Isot.
,
67
(
7–8
), pp.
1421
1425
.10.1016/j.apradiso.2009.02.040
17.
Martinho
,
E.
,
Neves
,
M. A.
, and
Freitas
,
M. C.
,
1984
, “
125I Production: Neutron Irradiation Planning
,”
Int. J. Appl. Radiat. Isot.
,
35
(
10
), pp.
933
938
.10.1016/0020-708X(84)90205-9
18.
Cheney
,
W.
, and
Kincaid
,
D.
,
2004
,
Numerical Mathematics and Computing
, 4th ed.,
Brooks/Cole Thomson Learning
,
Belmont, CA
, p.
671
.
19.
IAEA
,
2003
, “
Manual for Reactor Produced Radioisotopes
,” International Atomic Energy Agency, Vienna, Austria, p.
254
, Document No. IAEA-TECDOC-1340.
You do not currently have access to this content.