Abstract

This paper presents the passive design and safety features as well as the biological dose estimates for end-of-life handling of postoperation for the walk-away safe, scalable liquid metal-cooled small modular (SLIMM) and very-small, long-life, modular (VSLLIM) small and microreactor with high-assay low enrichment uranium (HALEU). These passive operation sodium cooled, fast-neutron spectrum reactors have recently been developed at the University of New Mexico's Institute for Space and Nuclear Power studies. The SLIMM-small modular reactor could generate 100–10 MWth continuously, 24/7 without refueling for 6.3–68 full power years (FPYs), respectively, while the VSLLIM microreactor could generate 10–1.0 MWth without refueling for 5.8–92 FPYs, respectively. These reactors would be factory constructed, assembled, and sealed and then transported to designated sites by rail, a truck, or a barge. At the site, these reactors would be installed below ground, to protect against impact by an airplane or a missile, and mounted on seismic isolation bearings, to resist earthquakes. The SLIMM and VSLLIM reactors could provide for both electricity generation and process heat and the electrical plants can easily be connected to a central or distributed grid with renewable energy sources. The integrated VSLLIM reactor and other plant components for electricity generation and/or process heat production could all be deployed on a single railroad car, a barge, or an 18-wheeler truck, to small and remote communities, and advance bases or outposts.

References

1.
John
,
J.
,
2018
, “
Distribute Energy Poised for Explosive Growth on the U.S. Grid
,” GTM Research, accessed June 21, 2019, https://www.greentechmedia.com/articles/read/distributed-energy-poised-for-explosive-growth-on-the-us-grid
2.
El-Genk
,
M. S.
, and
Palomino
,
L. M.
,
2019
, “
A Walk-Away Safe, Very Small, Long-LIfe, Modular (VSLLIM) Reactor for Portable and Stationary Power
,”
Ann. Nucl. Energy
,
129
, pp.
181
198
.10.1016/j.anucene.2019.01.025
3.
Vujic
,
J.
,
Bergmann
,
R. M.
,
Skoda
,
R.
, and
Miletic
,
M.
,
2012
, “
Small Modular Reactors: Simpler, Safer, Cheaper
,”
Energy
,
45
, pp.
288
295
.10.1016/j.energy.2012.01.078
4.
IAEA
,
2016
, “
Advance in Small Modular Reactor Technology Developments—A Supplement to the IAEA Advanced Reactors Information System (ARIS)
,”
International Atomic Energy Agency
,
Vienna, Austria
.
5.
El-Genk
,
M. S.
,
Palomino
,
L. M.
, and
Schriener
,
T. M.
,
2017
, “
Low-Enrichment and Long-Life Scalable LIquid Metal Cooled Small Modular (SLIMM-1.2) Reactor
,”
Nucl. Eng. Des.
,
316
, pp.
163
185
.10.1016/j.nucengdes.2017.02.032
6.
Peakman
,
A.
,
Hodgson
,
Z.
, and
Merk
,
B.
,
2018
, “
Advanced Micro-Reactor Concepts
,”
Prog. Nucl. Energy
,
107
, pp.
61
70
.10.1016/j.pnucene.2018.02.025
7.
Ingersoll
,
D. T.
,
Houghton
,
Z. J.
,
Bromm
,
R.
, and
Desportes
,
C.
,
2014
, “
NuScale Small Modular Reactor for Co-Generation of Electricity and Water
,”
Desalination
,
340
, pp.
84
93
.10.1016/j.desal.2014.02.023
8.
El-Genk
,
M. S.
, and
Schriener
,
T. M.
,
2018
, “
Post-Operation Radiological Source Term and Dose Rate Estimates for the Scalable LIquid Metal-Cooled Small Modular Reactor
,”
Ann. Nucl. Energy
,
115
, pp.
442
458
.10.1016/j.anucene.2018.02.001
9.
Palomino
,
L.
,
El-Genk
,
M. S.
, and
Schriener
,
T. M.
,
2019
, “
Post-Operation Dose Rate Estimates for the Very-Small, Long-Life, Modular (VSLLIM) Reactor
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
3
), p.
031302
.10.1115/1.4045297
10.
Haskins
,
D. A.
, and
El-Genk
,
M. S.
,
2017
, “
Natural Circulation Thermal-Hydraulics Model and Analyses of “SLIMM”–A Small Modular Reactor
,”
Ann. Nucl. Energy
,
101
, pp.
516
527
.10.1016/j.anucene.2016.11.036
11.
El-Genk
,
M. S.
, and
Tournier
,
J.-M. P.
,
2017
, “
Reliable and Safe Thermal Coupling of Generation-IV VHTR to a Hydrogen Fuel Production Complex
,”
J. Therm. Sci. Eng. Prog.
,
3
, pp.
164
170
.10.1016/j.tsep.2017.05.005
12.
Rodriguez
,
S. B.
,
Louie
,
D.
,
Gelbard
,
F.
,
El-Genk
,
M. S.
,
Gauntt
,
R. O.
,
Tournier
,
J.-M.
,
Cole
,
R.
,
Gelbrad
,
F.
,
McFadden
,
K.
,
Revankar
,
S. T.
,
Vierow
,
K.
,
Drennen
,
T.
,
Martin
,
B.
,
Espinoza
,
F.
, and
Archuleta
,
L.
,
2009
, “
Transient Analysis of Sulfur-Iodine Cycle Experiments and Very High Temperature Reactor Simulations Using MELCOR-H2
,”
J. Nucl. Technol.
,
166
(
1
), pp.
76
85
.10.13182/NT09-A6970
13.
Anantatmula
,
R. P.
, and
Berhm
,
W. F.
,
1985
, “
Sodium Compatibility of HT-9 and Fe-9Cr-1Mo Steels
,”
Westinghouse Hanford Company
, Hanford, WA, Report No. HEDL-SA-2801FP.
14.
Klueh
,
R. L.
, and
Nelson
,
A. T.
,
2007
, “
Ferritic/Martensitic Steels for Next Generation Reactors
,”
J. Nucl. Mater.
,
371
(
1–3
), pp.
37
52
.10.1016/j.jnucmat.2007.05.005
15.
Ross
,
S. B.
,
El-Genk
,
M. S.
, and
Matthews
,
R. B.
,
1990
, “
Uranium Nitride Fuel Swelling Correlation
,”
J. Nucl. Mater.
,
170
(
2
), pp.
169
177
.10.1016/0022-3115(90)90409-G
16.
Angelo
,
J. A.
, Jr.
, and
Buden
,
D.
,
1985
,
Space Nuclear Power
,
Orbit Book Company
,
Malabar, FL
.
17.
M. S.
El-Genk
, ed.,
1994
,
A Critical Review of Space Nuclear Power and Propulsion 1984-1993
,
American Institute of Physics Press
,
New York
.
18.
Bragg-Sitton
,
S.
,
2013
, “
Development of Advanced Accident Tolerant Fuel for Commercial LWRs
,”
Nucl. News
,
57
(
3
), pp.
83
91
.
19.
Johnson
,
K. D.
,
Raftery
,
A. M.
,
Lopes
,
D. A.
, and
Wallenius
,
J.
,
2016
, “
Fabrication and Microstructural Analysis of UN-U3Si2 Composites for Accident Tolerant Fuel Applications
,”
J. Nucl. Mater.
,
477
, pp.
18
23
.10.1016/j.jnucmat.2016.05.004
20.
Brown
,
N. R.
,
Aronson
,
A.
,
Todosow
,
M.
,
Brito
,
R.
, and
McClellan
,
K. J.
,
2014
, “
Neutronic Performance of Uranium Nitride Composite Fuels in a PWR
,”
Nucl. Eng. Des.
,
275
, pp.
393
407
.10.1016/j.nucengdes.2014.04.040
21.
Hickman
,
B. S.
, and
Pryor
,
A. W.
,
1964
, “
The Effect of Neutron Irradiation on Beryllium Oxide
,”
J. Nucl. Mater.
,
14
, pp.
96
110
.10.1016/0022-3115(64)90166-7
22.
Goorley
,
T.
,
2014
, “MCNP6.1.1-Beta Release Notes,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-14-24680.
23.
Palomino
,
L.
, and
El-Genk
,
M. S.
,
2016
, “
CFD and Thermal-Hydraulics Analyses of “SLIMM” Reactor Passive Decay Heat Removal by Natural Circulation of Ambient Ai
,”
J. Nucl. Technol.
,
195
(
1
), pp.
1
14
.10.13182/NT15-102
24.
CD-ADAPCO,
2017
, “
CD-ADAPCO, STAR-CCM+ Release 12.02
,” cd-adapco, http://www.cd-adapco.com/
25.
Gauld
,
I. C.
,
Bowman
,
S. M.
, and
Horwedel
,
J. E.
,
2006
, “ORIGEN-ARP: Automatic Rapid Processing for Spent Fuel Depletion, Decay, and Source Term Analysis,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2005/39
.https://www.researchgate.net/publication/240161467_ORIGEN-ARP_Automatic_Rapid_Process_for_Spent_Fuel_Depletion_Decay_And_Source_Term_Analysis
26.
National Council on Radiation Protection and Measurements,
1971
, “
Radiation, Protection Against Neutron
,”
National Council on Radiation Protection and Measurements
,
Washington, DC
, Report No. NCRP-38.
27.
U.S. Code of Federal Regulation
,
2017
, “
Title 10 Part 71.47: External Radiation Standards for All Packages, US Nuclear Regulatory Commission (NRC)
,” Washington, DC, accessed Jan. 20, 2019 https://www.nrc.gov/reading-rm/doc-collections/cfr/part071/part071-0047.html
You do not currently have access to this content.