Abstract

The review of numerical studies on the turbulent flow and heat transfer of supercritical pressure (SCP) coolants in heated vertical round tubes, which were conducted using different differential turbulent viscosity models, is presented. The results of predictions are compared with the experimental data on wall temperature and heat transfer rate. It is shown that most often the turbulent viscosity models only qualitatively (but not quantitatively) predict the deteriorated heat transfer effects, which appear due do buoyancy forces and thermal acceleration effects at strongly variable physical properties of a coolant. At the same time, the regimes of normal heat transfer are successfully reproduced by “standard” k–ε and RNG models with wall functions (WFs), as well as by two-layer models. The conclusion is made that none of the presently known turbulent viscosity models can be confidently recommended for predicting any flow regimes and heat transfer of SCP coolants. Strongly variable properties of SCP coolant stipulate more strict demands for validating mesh independence of the obtained results and for an accuracy of approximation of the tabulated values of the coolant properties. It was ascertained that using more and more numerous calculation codes and the results from their application requires certain caution and circumspection. Sometimes, the energy transport equations were erroneously written for temperature or temperature variance rather than for enthalpy. Crying discrepancy in the predictions of different authors conducted using the same CFD codes and turbulence models and possible reasons for such a discrepancy are not analyzed.

References

1.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London
.
2.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
,
1985
, “
Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review
,”
AIAA J.
,
23
(
9
), pp.
1308
1319
.10.2514/3.9086
3.
Hauptmann
,
E. G.
, and
Malhotra
,
A.
,
1980
, “
Axial Development of Unusual Velocity Profiles Due to Heat Transfer in Variable Density Fluids
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
71
74
.10.1115/1.3244251
4.
Wood
,
R. D.
,
1963
, “
Heat Transfer in the Critical Region: Experimental Investigation of Radial Temperature and Velocity Profiles
,” Ph. D. thesis, Nortwestern University, Evanston, IL.
5.
Youn
,
B.
, and
Mills
,
A. F.
,
1993
, “
Flow of Supercritical Hydrogen in a Uniformly Heated Circular Tube
,”
Numer. Heat Transfer, Part A.
,
24
(
1
), pp.
1
24
.10.1080/10407789308902600
6.
Hendricks
,
R. C.
,
Simoneau
,
R. J.
, and
Friedman
,
R.
,
1965
, “Heat Transfer Characteristics of Cryogenic Hydrogen From 1000 to 2500 Psia Flowing Upward in Uniformly Heated Straight Tubes,” Lewis Research Center, Cleveland, OH, NASA TN D-2977.
7.
Hendricks
,
R. С.
,
Graham
,
R. W.
,
Hsu
,
Y. Y.
, and
Friedman
,
R.
,
1966
, “Experimental Heat Transfer Results for Cryogenic Hydrogen Flowing in Tubes at Subcritical and Supercritical Pressures to 800 Pounds per Square Inch Absolute,” Lewis Research Center, Cleveland, OH, Report No. NASA TN D-3095.
8.
Koshizuka
,
S.
,
Takano
,
N.
, and
Oka
,
Y.
,
1995
, “
Numerical Analysis of Deterioration Phenomena Ire Heat Transfer to Supercritical Water
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3077
3084
.10.1016/0017-9310(95)00008-W
9.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.10.1016/0017-9310(72)90148-2
10.
ANSYS, Inc
., 2019, “ANSYS FLUENT Theory Guide,” ANSYS, Canonsburg, PA.
11.
ANSYS, Inc
., 2019, “ANSYS CFX—Solver Theory Guide,” ANSYS, Canonsburg, PA.
12.
STAR-CCM+
, 2004, “
User Manual,” CD ADAPCO,
London, UK.
13.
Spalding, D. B., 1981, “PHOENICS a General-Purpose Computer Program for Multi- Dimensional One- and Two-Phase Flow,” Math. Comput. Simul., XXIII, pp. 267–276.
14.
Kim
,
S. H.
,
Kim
,
Y. I.
,
Bae
,
Y. Y.
, and
Cho
,
B. H.
,
2004
, “
Numerical Simulation of the Vertical Upward Flow of Water in a Heated Tube at Supercritical Pressure
,”
Proceedings of ICAPP'04, Pittsburg
,
PA
, 13 – 17 June, 2004,  Paper No. 4047, pp.
1527
1534.
15.
Kader
,
B.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.10.1016/0017-9310(81)90220-9
16.
Seo
,
K. W.
,
Kim
,
M. H.
,
Anderson
,
M. H.
, and
Corradini
,
M. L.
,
2006
, “
Heat Transfer in a Supercritical Fluid: Classification of Heat Transfer Regimes
,”
Nucl. Technol.
,
154
(
3
), pp.
335
349
.10.13182/NT06-A3738
17.
Shitsman
,
M. E.
,
1963
, “
Impairment of the Heat Transmission at Supercritical Pressures
,”
Teplofizika Vysokikh Temperature
,
1
(
2
), pp.
267
275
(in Russian).
18.
Yang
,
J.
,
Oka
,
Y.
,
Ishiwatari
,
Y.
,
Liu
,
J.
, and
Yoo
,
J.
,
2007
, “
Numerical Investigation of Heat Transfer in Upward Flows of Supercritical Water in Circular Tubes and Tight Fuel Rod Bundles
,”
Nucl. Eng. Des.
,
237
(
4
), pp.
420
430
.10.1016/j.nucengdes.2006.08.003
19.
Sharabi
,
M.
, and
Ambrosini
,
W.
,
2009
, “
Discussion of Heat Transfer Phenomena in Fluids at Supercritical Pressure With the Aid of CFD Models
,”
Ann. Nucl. Energy
,
36
(
1
), pp.
60
71
.10.1016/j.anucene.2008.10.006
20.
Bazargan
,
M.
, and
Mohseni
,
M.
,
2012
, “
Algebraic Zero-Equation Versus Complex Two-Equation Turbulence Modeling in Supercritical Fluid Flows
,”
Comput. Fluids
,
60
, pp.
49
57
.10.1016/j.compfluid.2012.02.022
21.
Kim
,
J. K.
,
Jeon
,
H. K.
,
Yoo
,
J. Y.
, and
Lee
,
J. S.
,
2005
, “
Experimental Study on Heat Transfer Characteristics of Turbulent Supercritical Flow in Vertical Circular/Non-Circular Tubes
,”
Proceedings of the NURETH-11
,
Avignon, France
, Oct. 2–6, Paper No. 265.
22.
Bae
,
Y.-Y.
, and
Kim
,
H.-Y.
,
2009
, “
Convective Heat Transfer to CO2 at a Supercritical Pressure Flowing Vertically Upward in Tubes and an Annular Channel
,”
Exp. Therm. Fluid Sci
,.,
33
(
2
), pp.
329
339
.10.1016/j.expthermflusci.2008.10.002
23.
Dang
,
C.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide—Part 2: Comparison of Numerical Calculation With Different Turbulence Models
,”
Int. J. Refrig.
,
27
(
7
), pp.
748
760
.10.1016/j.ijrefrig.2004.04.017
24.
He
,
S.
,
Jiang
,
P. X.
,
Xu
,
Y. J.
,
Shi
,
R. F.
,
Kim
,
W. S.
, and
Jackson
,
J. D.
,
2005
, “
A Computational Study of Convection Heat Transfer to CО2 at Supercritical Pressures in a Vertical Mini Tube
,”
Int. J. Therm. Sci.
,
44
(
6
), pp.
521
530
.10.1016/j.ijthermalsci.2004.11.003
25.
Asinari
,
P.
,
2005
, “
Numerical Prediction of Turbulent Convective Heat Transfer in Mini/Micro Channels for Carbon Dioxide at Supercritical Pressure
,”
Int. J. Heat Mass Transfer
,
48
(
18
), pp.
3864
3879
.10.1016/j.ijheatmasstransfer.2005.03.028
26.
Tanaka
,
H.
,
Nishiwaki
,
N.
, and
Hirata
,
M.
,
1967
, “
Turbulent Heat Transfer in Vertical Tubes at Supercritical Pressures
,”
Proceedings of JSME Semi-International Symposium
,
Tokyo, Japan
, Sept. 4–8, pp.
127
134
.
27.
Dang
,
C.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide. Part l. Experimental Measurement
,”
Int. J. Refrig.
,
27
(
7
), pp.
736
747
.10.1016/j.ijrefrig.2004.04.018
28.
Myong
,
H. K.
, and
Kasagi
,
N.
,
1990
, “
A New Approach to the Improvement of k-ε Turbulence Model for Wall Bounded Shear Flows
,”
JSME Int. J., Ser. II
,
33
(
1
), pp.
63
72
.10.1299/jsmeb1988.33.1_63
29.
Jiang
,
P. X.
,
Xu
,
Y. J.
,
Lv
,
J.
,
Shi
,
R. F.
,
He
,
S.
, and
Jackson
,
J. D.
,
2004
, “
Experimental Investigation of Convection Heat Transfer of CO2 at Super-Critical Pressures in Vertical Mini Tubes and in Porous Media
,”
Appl. Therm. Eng.
,
24
(
8–9
), pp.
1255
1270
.10.1016/j.applthermaleng.2003.12.024
30.
Wood
,
R. D.
, and
Smith
,
J. M.
,
1964
, “
Heat Transfer in the Critical Region-Temperature and Velocity Profiles in Turbulent Flow
,”
AICHE J.
,
10
(
2
), pp.
180
186
.10.1002/aic.690100210
31.
He
,
S.
,
Kim
,
W. S.
,
Jiang
,
P. X.
, and
Jackson
,
J. D.
,
2004
, “
Simulation of Mixed Convection Heat Transfer to Carbon Dioxide at Supercritical Pressure
,”
Proc. Instn. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
218
(
11
), pp.
1281
1296
.10.1177/095440620421801101
32.
Ince
,
N. Z.
, and
Launder
,
B. E.
,
1989
, “
On the Computation of Buoyancy-Driven Turbulent Flows in Rectangular Enclosures
,”
Int. J. Heat Fluid Flow
,
10
(
2
), pp.
110
117
.10.1016/0142-727X(89)90003-9
33.
Cotton
,
M. A.
, and
Jackson
,
J. D.
,
1990
, “
Vertical Tube Air Flows in the Turbulent Mixed Convection Regime Calculated Using a low-Reynolds Number k-ε Model
,”
Int. J. Heat Mass Transfer
,
33
(
2
), pp.
275
286
.10.1016/0017-9310(90)90098-F
34.
Bae
,
J. H.
,
Yoo
,
J. Y.
, and
Choi
,
H.
,
2005
, “
Direct Numerical Simulation of Turbulent Supercritical Flows With Heat Transfer
,”
Phys. Fluids
,
17
(
10
), pp.
105104
105104
.10.1063/1.2047588
35.
Weinberg
,
R.
,
1972
, “
Experimental and Theoretical Study of Buoyancy Effects in Forced Convection to Supercritical Pressure Carbon Dioxide
,” Ph.D. thesis, University of Manchester, Manchester, UK.
36.
Jiang
,
P. X.
,
Zhang
,
Y.
,
Zhao
,
C. R.
, and
Shi
,
R. F.
,
2008
, “
Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Mini Tube at Relatively Low Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1628
1637
.10.1016/j.expthermflusci.2008.05.006
37.
McEligot
,
D. M.
, and
Jackson
,
J. D.
,
2004
, “‘
Deterioration' Criteria for Convective Heat Transfer in Gas Flow Through Non- Circular Ducts
,”
Nucl. Eng. Des.
,
232
(
3
), pp.
327
333
.10.1016/j.nucengdes.2004.05.004
38.
Jiang
,
P. X.
,
Zhang
,
Y.
,
Xu
,
Y. J.
, and
Shi
,
R. F.
,
2008
, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Tube at Low Reynolds Numbers
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
998
1011
.10.1016/j.ijthermalsci.2007.08.003
39.
Zhao
,
C.-R.
,
Zhang
,
Z.
,
Jiang
,
P.-X.
,
Xu
,
R.-N.
, and
Bo
,
H.-L.
,
2018
, “
Influence of Channel Scale on the Convective Heat Transfer of CO2 at Supercritical Pressure in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
126
, pp.
201
210
.10.1016/j.ijheatmasstransfer.2018.04.080
40.
He
,
S.
,
Kim
,
W. S.
, and
Jackson
,
J. D.
,
2008
, “
A Computational Study of Convective Heat Transfer to Carbon Dioxide at a Pressure Just Above the Critical Value
,”
Appl. Therm. Eng.
,
28
(
13
), pp.
1662
1675
.10.1016/j.applthermaleng.2007.11.001
41.
Fewster
,
J.
, and
Jackson
,
J. D.
,
2004
, “
Some Experiments on Heat Transfer to Carbon Dioxide at Supercritical Pressures in Tubes
,”
Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP-04)
,
Pittsburg, PA
, June 13–17, pp.
537
551
.
42.
Bazargan
,
M.
, and
Mohseni
,
M.
,
2009
, “
The Significance of the Buffer Zone of Boundary Layer on Convective Heat Transfer to a Vertical Turbulent Flow of a Supercritical Fluids
,”
J. Supercrit. Fluids
,
51
(
2
), pp.
221
229
.10.1016/j.supflu.2009.08.004
43.
Mohseni
,
M.
, and
Bazargan
,
M.
,
2011
, “
The Effect of the Low Reynolds Number k-ε Turbulence Models on Simulation of the Enhanced and Deteriorated Convective Heat Transfer to the Supercritical Fluid Flow
,”
Heat Mass Transfer
,
47
(
5
), pp.
609
619
.10.1007/s00231-010-0753-9
44.
Mohseni
,
M.
, and
Bazargan
,
M.
,
2011
, “
Effect of Turbulent Prandtl Number on Convective Heat Transfer to Turbulent Flow of a Supercritical Fluid in a Vertical Round Tube
,”
ASME J. Heat Transfer
,
133
(
7
), p.
071701
.10.1115/1.4003570
45.
Mohseni
,
M.
, and
Bazargan
,
M.
,
2012
, “
A New Analysis of Heat Transfer Deterioration on Basis of Turbulent Viscosity Variations of Supercritical Fluids
,”
ASME J. Heat Transfer
,
134
(
12
), p.
122503
.10.1115/1.4007313
46.
Mohseni
,
M.
, and
Bazargan
,
M.
,
2016
, “
A New Correlation for the Turbulent Prandtl Number in Upward Rounded Tubes in Supercritical Fluid Flows
,”
ASME J. Heat Transfer
,
138
(
8
), p.
081701
.10.1115/1.4033137
47.
Song
,
J. H.
,
Kim
,
H. Y.
,
Kim
,
H.
, and
Bae
,
Y. Y.
,
2008
, “
Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe
,”
J. Supercrit. Fluids
,
44
(
2
), pp.
164
171
.10.1016/j.supflu.2007.11.013
48.
Bazargan
,
M.
,
Fraser
,
D.
, and
Chatoorgan
,
V.
,
2005
, “
Effect of Buoyancy on Heat Transfer in Supercritical Water Flow in a Horizontal Round Tube
,”
ASME J. Heat Transfer
,
127
(
8
), pp.
897
902
.10.1115/1.1929787
49.
Bae
,
Y.-Y.
,
Kim
,
H.-Y.
, and
Kang
,
D.-Y.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
.10.1016/j.expthermflusci.2010.06.001
50.
Myong
,
H. K.
,
Kasagi
,
N.
, and
Hirata
,
M.
,
1989
, “
Numerical Prediction of Turbulent Pipe Flow Heat Transfer for Various Prandtl Number Fluids With the Improved k-ε Model
,”
JSME Int. J., Ser. II
,
32
(
4
), pp.
613
622
.10.1299/jsmeb1988.32.4_613
51.
Hollingsworth
,
D. K.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
,
1989
, “
Measurement and Prediction of the Turbulent Thermal Boundary Lager in Water on Flat and Concave Surface
,” Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford, CA, Report No. HMT-41.
52.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number—Where Are we?
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.10.1115/1.2911398
53.
Kurganov
,
V. A.
,
Zeigarnik
,
Y. A.
, and
Maslakova
,
I. V.
,
2014
, “
Heat Transfer and Hydraulic Resistance of Supercritical Pressure Coolants—Part IV: Problems of Generalized Heat Transfer Description, Methods of Predicting Deteriorated Heat Transfer; Empirical Correlations; Deteriorated Heat Transfer; Enhancement; Dissolved Gas Effects
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1197
1212
.10.1016/j.ijheatmasstransfer.2014.06.014
54.
Bourke
,
P. J.
, and
Pulling
,
D. J.
,
1971
, “
Experimental Explanation of Deterioration in Heat Transfer to Supercritical Carbon Dioxide
,” ASME Paper Nо. 71-HT-24.
55.
Kurganov
,
V. A.
, and
Kaptil'ny
,
A. G.
,
1992
, “
Velocity and Enthalpy Fields and Eddy Diffusivities in a Heated Supercritical Fluid Flow
,”
Exp. Therm. Fluid Sci. (ETF)
,
5
(
4
), pp.
465
478
.10.1016/0894-1777(92)90033-2
56.
Kurganov
,
V. A.
, and
Kaptilnyi
,
A. G.
,
1993
, “
Flow Structure and Turbulent Transport of a Supercritical Pressure Fluid in a Vertical Heated Tube Under the Conditions of Mixed Convection. Experimental Data
,”
Int. J. Heat Mass Transfer
,
36
(
13
), pp.
3383
3392
.10.1016/0017-9310(93)90020-7
57.
Bankston
,
C. A.
, and
McEligot
,
D. M.
,
1970
, “
Turbulent and Laminar Heat Transfer to Gases With Varying Properties in the Entry Region of Circular Ducts
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
319
344
.10.1016/0017-9310(70)90110-9
58.
Palko
,
D.
, and
Anglart
,
H.
,
2008
, “
Theoretical and Numerical Study of Heat Transfer Deterioration in High Performance Light Water Reactor
,”
Sci. Technol. Nucl. Install.
,
2008
, p.
405072
.10.1155/2008/405072
59.
Wen
,
Q. L.
, and
Gu
,
H. Y.
,
2010
, “
Numerical Simulation of Heat Transfer Deterioration Phenomenon in Supercritical Water Through Vertical Tube
,”
Ann. Nucl. Energy
,
37
(
10
), pp.
1272
1280
.10.1016/j.anucene.2010.05.022
60.
Wen
,
Q. L.
, and
Gu
,
H. Y.
,
2011
, “
Numerical Investigation of Acceleration Effect on Heat Transfer Deterioration Phenomenon in Supercritical Water
,”
Prog. Nucl. Energy
,
53
(
5
), pp.
480
486
.10.1016/j.pnucene.2011.02.012
61.
Jaromin
,
M.
, and
Anglart
,
H.
,
2013
, “
A Numerical Study of Heat Transfer to Supercritical Water Flowing Upward in Vertical Tubes Under Normal and Deteriorated Conditions
,”
Nucl. Eng. Des.
,
264
, pp.
61
70
.10.1016/j.nucengdes.2012.10.028
62.
Ebrahimnia
,
E.
,
Chatoorgoon
,
V.
, and
Ormiston
,
S. J.
,
2016
, “
Numerical Stability Analyses of Upward Flow of Supercritical Water in a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
97
, pp.
828
841
.10.1016/j.ijheatmasstransfer.2016.02.069
63.
Liu
,
L.
,
Xiao
,
Z.
,
Yan
,
X.
,
Zeng
,
X.
, and
Huang
,
Y.
,
2013
, “
Heat Transfer Deterioration to Supercritical Water in Circular Tube and Annular Channel
,”
Nucl. Eng. Des.
,
255
, pp.
97
104
.10.1016/j.nucengdes.2012.09.025
64.
Bae
,
Y. Y.
,
2016
, “
A New Formulation of Variable Turbulent Prandtl Number for Heat Transfer to Supercritical Fluids
,”
Int. J. Heat Mass Transfer
,
92
, pp.
792
806
.10.1016/j.ijheatmasstransfer.2015.09.039
65.
Shitsman
,
M. E.
,
1967
, “
Natural Convection Effect on Heat Transfer to a Turbulent Water Flow in Intensively Heated Tubes at a Supercritical Pressures
,”
Proc. Instn. Mech. Eng.
,
182
(
Pt. 3I
), p.
6
.
66.
Ornatskii
,
A. P.
,
Glushchenko
,
L. F.
, and
Kalachev
,
S. I.
,
1971
, “
Heat Transfer at Upward and Downward Water Flow in Small Diameter Tubes at Supercritical Pressures
,”
Teploenergetika
,
18
(
5
), pp.
137
141
(in Russian).
67.
Pis´menny
,
E. N.
,
Razumovskiy
,
V. G.
,
Maevskiy
,
A. E.
, and
Pioro
,
I. L.
,
2006
, “
Heat Transfer to Supercritical Water in Gaseous State or Affected by Mixed Convection in Vertical Tubes
,”
ASME
Paper No. ICONE14-89483.10.1115/ICONE14-89483
68.
Li
,
H.
,
Yang
,
J.
,
Gu
,
H.
,
Lu
,
D.
,
Zhang
,
J.
,
Wang
,
F.
, and
Zhang
,
Y.
,
2012
, “
Heat Transfer Research on Supercritical Water Flow Upward in Tube
,”
ICAPP'12
, Chicago, IL, June 24–28, Paper No. 12435.
69.
Vikhrev
,
Y. V.
,
Barulin
,
Y. D.
, and
Kon'kov
,
A. S.
,
1967
, “
A Study of Heat Transfer in Vertical Tubes at Supercritical Pressures
,”
Teploenergetika
,
14
(
9
), pp.
116
119
(in Russian).
70.
Bae
,
Y. Y.
,
2011
, “
Mixed Convection Heat Transfer to Carbon Dioxide Flowing Upward and Downward in a Vertical Tube and an Annular Channel
,”
Nucl. Eng. Des.
,
241
(
8
), pp.
3164
3177
.10.1016/j.nucengdes.2011.06.016
71.
Mori
,
H.
,
Ohno
,
M.
,
Ohishi
,
K.
, and
Hamamoto
,
Y.
,
2008
, “
Research and Development of a Super Fast Reactor (7) Heat Transfer to a Supercritical Pressure Fluid Flowing in a Sub-Bundle Channel
,”
16th Pacific Basin Nuclear Conference (16 PBNC)
,
Aomori, Japan
, Oct. 13–18, Paper No. P16P1297.
72.
Zhang
,
G.
,
Zhang
,
H.
,
Gu
,
H.
,
Yang
,
Y.
, and
Cheng
,
X.
,
2012
, “
Experimental and Numerical Investigation of Turbulent Convective Heat Transfer Deterioration of Supercritical Water in Vertical Tube
,”
Nucl. Eng. Des.
,
248
, pp.
226
237
.10.1016/j.nucengdes.2012.03.026
73.
Zhang
,
H.
,
Xie
,
Z. R.
, and
Yang
,
Y. H.
,
2010
, “
Numerical Study on Supercritical Fluids Flow and Heat Transfer Under Buoyancy
,”
The Eighth International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-8)
,
Shanghai, China
, Oct. 10–14, Paper No. N8P0187.
74.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1976
, “
On the Calculation of Horizontal Turbulent, Free Shear Flows Under Gravitational Influence
,”
ASME J. Heat Transfer
,
98
(
1
), pp.
81
87
.10.1115/1.3450474
75.
Liu
,
S. H.
,
Huang
,
Y. P.
,
Wang
,
J. F.
, and
Leung
,
L. K. H.
,
2018
, “
Numerical Investigation of Buoyancy Effect on Heat Transfer to Carbon Dioxide Flow in a Tube at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
117
, pp.
595
606
.10.1016/j.ijheatmasstransfer.2017.10.037
76.
Liu
,
S. H.
,
Huang
,
Y. P.
,
Liu
,
G. X.
,
Wang
,
J. F.
, and
Leung
,
L. K. H.
,
2017
, “
Improvement of Buoyancy and Acceleration Parameters for Forced and Mixed Convective Heat Transfer to Supercritical Fluids Flowing in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1144
1156
.10.1016/j.ijheatmasstransfer.2016.10.093
77.
Xiong
,
J.
, and
Cheng
,
X.
,
2014
, “
Turbulence Modelling for Supercritical Pressure Heat Transfer in Upward Tube Flow
,”
Nucl. Eng. Des.
,
270
, pp.
249
258
.10.1016/j.nucengdes.2014.01.014
78.
Hanjalič
,
K.
,
Popovac
,
M.
, and
Hadziabdic
,
M.
,
2004
, “
A Robust Near-Wall Elliptic-Relaxation Eddy-Viscosity Turbulence Model for CFD
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
1047
1051
.10.1016/j.ijheatfluidflow.2004.07.005
79.
Dehoux
,
F.
,
Lecocq
,
Y.
,
Benhamadouche
,
S.
,
Manceau
,
R.
, and
Brizzi
,
L. E.
,
2012
, “
Algebraic Modeling of the Turbulent Heat Fluxes Using the Elliptic Blending Approach-Application to Forced and Mixed Convection Regimes
,”
Flow Turbulence Combust.
,
88
(
1–2
), pp.
77
100
.10.1007/s10494-011-9366-8
80.
Kenjereš
,
S.
,
Gunarjo
,
S. B.
, and
Hanjalič
,
K.
,
2005
, “
Contribution to Elliptic Relaxation Modeling of Turbulent Natural and Mixed Convection
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
569
586
.10.1016/j.ijheatfluidflow.2005.03.007
81.
Pucciarelli
,
A.
,
Borroni
,
I.
,
Sharabi
,
M.
, and
Ambrosini
,
W.
,
2015
, “
Results of 4-Equation Turbulence Models in the Prediction of Heat Transfer to Supercritical Pressure Fluids
,”
Nucl. Eng. Des.
,
281
, pp.
5
14
.10.1016/j.nucengdes.2014.11.004
82.
Pucciarelli
,
A.
,
Sharabi
,
M.
, and
Ambrosini
,
W.
,
2016
, “
Prediction of Heat Transfer to Supercritical Fluids by the Use of Algebraic Heat Flux Models
,”
Nucl. Eng. Des.
,
297
, pp.
257
266
.10.1016/j.nucengdes.2015.11.029
83.
Pucciarelli
,
A.
, and
Ambrosini
,
W.
,
2017
, “
Improvements in the Prediction of Heat Transfer to Supercritical Pressure Fluids by the Use of Algebraic Heat Flux Models
,”
Ann. Nucl. Energy
,
99
, pp.
58
67
.10.1016/j.anucene.2016.09.022
84.
Pucciarelli
,
A.
, and
Ambrosini
,
W.
,
2018
, “
Use of AHFM for Simulating Heat Transfer to Supercritical Fluids: Application to Carbon Dioxide Data
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1138
1146
.10.1016/j.ijheatmasstransfer.2018.07.125
85.
Fewster
,
J.
,
1976
, “
Mixed Forced and Free Convective Heat Transfer to Supercritical Pressure Fluids Flowing in Vertical Pipes
,” Ph.D. thesis, University of Manchester, Manchester, UK.
86.
Watts
,
M. J.
,
1980
, “
Heat Transfer to Supercritical Pressure Water—Mixed Convection With Upflow and Downflow in Vertical Tube
,” Ph.D. thesis, University of Manchester, Manchester, UK.
87.
Kline
,
N.
,
2017
, “
An Experimental Study on Heat Transfer Deterioration at Supercritical Pressure
,” M.Sc. thesis, Ottawa-Carleron Institute for Mechanical and Aerospace Engineering, University of Ottawa, Ottawa, ON, Canada.
88.
Moukalled
,
F.
,
Mangani
,
L.
, and
Darwish
,
M.
,
2016
, “The Finite Volume Method in Compulational Fluid Dynamics,”
Springer International Publishing
,
Cham, Switzerland
.
89.
Jiang
,
P.-X.
,
Wang
,
Z.-C.
, and
Xu
,
R.-N.
,
2018
, “
A Modified Buoyancy Effect Correction Method on Turbulent Convection Heat Transfer of Supercritical Pressure Fluid Based on RANS Model
,”
Int. J. Heat Mass Transfer
,
127
, pp.
257
267
.10.1016/j.ijheatmasstransfer.2018.07.042
90.
Li
,
Z.-H.
,
Jiang
,
P.-X.
,
Zhao
,
C.-R.
, and
Zhang
,
Y.
,
2010
, “
Experimental Investigation of Convection Heat Transfer to CO2 at Supercritical Pressures in a Vertical Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1162
1171
.10.1016/j.expthermflusci.2010.04.005
91.
Xu
,
R.-N.
,
Luo
,
F.
, and
Jiang
,
P.-X.
,
2017
, “
Buoyancy Effects on Turbulent Heat Transfer of Supercritical CO2 in a Vertical Mini-Tube Based on Continuous Wall Temperature Measurements
,”
Int. J. Heat Mass Transfer
,
110
, pp.
576
586
.10.1016/j.ijheatmasstransfer.2017.03.063
92.
Li
,
Z.
,
Wu
,
Y.
,
Lu
,
J.
,
Zhang
,
D.
, and
Zhang
,
H.
,
2014
, “
Heat Transfer to Supercritical Water in Circular Tubes With Circumferentially Non-Uniform Heating
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
190
200
.10.1016/j.applthermaleng.2014.05.013
93.
Ackerman
,
J. W.
,
1970
, “
Heat Transfer During Pseudoboiling of Water in Supercritical Region in Smooth and Finned Tubes
,”
ASME J. Heat Transfer
,
92
(
3
), pp.
490
498
.10.1115/1.3449698
94.
Zhu
,
X. J.
,
Bi
,
Q. C.
,
Yang
,
D.
, and
Chen
,
T. K.
,
2009
, “
An Investigation on Heat Transfer Characteristics of Different Pressure Steam-Water in Vertical Upward Tube
,”
Nucl. Eng. Des.
,
239
(
2
), pp.
381
388
.10.1016/j.nucengdes.2008.10.026
95.
Qu
,
M.
,
Yang
,
D.
,
Liang
,
Z.
,
Wan
,
L.
, and
Liu
,
D.
,
2018
, “
Experimental and Numerical Investigation on Heat Transfer of Ultra-Supercritical Water in Vertical Upward Tube Under Uniform and Non-Uniform Heating
,”
Int. J. Heat Mass Transfer
,
127
, pp.
769
783
.10.1016/j.ijheatmasstransfer.2018.08.079
96.
Pu
,
H.
,
Li
,
S.
,
Jiao
,
S.
,
Dong
,
M.
, and
Shang
,
Y.
,
2018
, “
Numerical Investigation on Convective Heat Transfer to Aviation Kerosene Flowing in Vertical Tubes at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
118
, pp.
857
871
.10.1016/j.ijheatmasstransfer.2017.11.029
97.
Yang
,
Z.
,
Cheng
,
X.
,
Zheng
,
X.
, and
Chen
,
H.
,
2019
, “
Numerical Investigation on Heat Transfer of the Supercritical Fluid Upward in Vertical Tube With Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
128
, pp.
875
884
.10.1016/j.ijheatmasstransfer.2018.09.049
98.
Sharabi
,
M. B.
,
Ambrosini
,
W.
, and
He
,
S.
,
2008
, “
Prediction of Unstable Behavior in a Heated Channel With Water at Supercritical Pressure by CFD Model
,”
Ann. Nucl. Energy
,
35
(
5
), pp.
767
782
.10.1016/j.anucene.2007.09.019
99.
Dutta
,
G.
,
Maitri
,
R.
,
Zhang
,
C.
, and
Jiang
,
J.
,
2015
, “
Numerical Models to Predict Steady and Unsteady Thermal-Hydralic Behavior of Supercritical Water Flow in Circular Tubes
,”
Nucl. Eng. Des.
,
289
, pp.
155
165
.10.1016/j.nucengdes.2015.04.028
100.
Chatoorgoon
,
V.
,
1986
, “
SPORTS-A Simple Non-Linear Thermalhydraulic Stability Code
,”
Nucl. Eng. Des.
,
93
(
1
), pp.
51
67
.10.1016/0029-5493(86)90194-9
101.
Ledinegg
,
M.
,
1938
, “
Instability of Flow During Natural and Forced Convection
,”
Die Warme
,
61
(
8
), pp.
891
898
.
102.
Chatoorgoon
,
V.
,
2013
, “
Hon-Dimensional Parameters for Static Instability in Supercritical Heated Channels
,”
Int. J. Heat Mass Transfer
,
64
, pp.
145
154
.10.1016/j.ijheatmasstransfer.2013.04.026
103.
U.S. NRC, 1995, “RELAP5/MOD3 Code Manual,” accessed May 8, 2020, https://www.researchgate.net/publication/255195066_RELAP5MOD3_code_ manual
104.
Mokry
,
S.
,
Pioro
,
I.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.10.1016/j.nucengdes.2010.06.012
105.
Churkin
,
A.
,
Bilbao
,
S.
, and
Yamada
,
K.
,
2011
, “
Analysis of the IAEA Benchmark Exercise on Steady State Flow in a Heated Pipe With Supercritical Water
,”
Proc. ICAPP
, pp.
139
145
.
106.
Swenson
,
H. S.
,
Carver
,
J. R.
, and
Kakarala
,
C. R.
,
1965
, “
Heat Transfer to Supercritical Water in Smooth-Bore Tubes
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
477
484
.10.1115/1.3689139
107.
Watts
,
M. J.
, and
Chou
,
C. T.
,
1982
, “
Mixed Convective Heat Transfer to Supercritical Pressure Water
,”
Proceedings Seventh International Heat Transfer Conference, Heat Transfer-82
, Vol.
3
,
München, Germany
, Sept. 6–10, pp.
495
500
.
108.
Krasnoshchekov
,
E. A.
, and
Protopopov
,
V. S.
,
1966
, “
Experimental Studying of Carbon Dioxide Heat Transfer in Supercritical Region Under High Temperature Differences
,”
Teplofizika Vysokikh Temperatur
,
4
(
3
), pp.
389
398
(in Russian).
109.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,”
Turbulent Forced Convection in Channels and Bundles
,
S.
Kakač
,
D. B.
Spalding
, ed., Vol.
2
,
Hemisphere
,
Washington
, pp.
563
612
.
110.
Kurganov
,
V. A.
,
Zeigarnik
,
Y. A.
,
Yankov
,
G. G.
, and
Maslakova
,
I. V.
,
2018
,
Heat Transfer and Hydraulic Resistance in Tubes at a Supercritical Pressure of a Coolant: Results From Scientific Studies and Practical Recommendations
,
Shans Publishing
,
Moscow, Russia
, p.
304
(in Russian).
111.
Abid
,
R.
,
1993
, “
Evaluation of Two-Equation Turbulence Model for Predicting Transitional Flows
,”
Int. J. Eng. Sci.
,
31
(
6
), pp.
831
840
.10.1016/0020-7225(93)90096-D
112.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
,
1994
, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I: Flow Field Calculations
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
139
151
.10.1016/0017-9310(94)90168-6
113.
Bellmore
,
C. P.
, and
Reid
,
R. L.
,
1983
, “
Numerical Prediction of Wall Temperatures for Near-Critical Para-Hydrogen in Turbulent Upflow Inside Vertical Tubes
,”
ASME J. Heat Transfer
,
105
(
3
), pp.
536
541
.10.1115/1.3245618
114.
Chien
,
K.-Y.
,
1982
, “
Predictions of Channel and Boundary-Layer Flows With a Low Reynolds Number Two-Equation Model of Turbulence
,”
AIAA J.
,
20
(
1
), pp.
33
38
.10.2514/3.51043
115.
Chang
,
K. C.
,
Hsieh
,
W. D.
, and
Chen
,
C. S.
,
1995
, “
A Modified low-Reynolds Number Turbulence Model Applicable to Recirculating Flow in Pipe Expansion
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
417
423
.10.1115/1.2817278
116.
Chen
,
Y. S.
, and
Kim
,
S. W.
,
1987
, “
Computation of Turbulent Flows Using an Extended k-ε Turbulence Closure Model
,” NASA- Marshall Space Flight Center, Alabama, Report No. NASA (CR-179204).
117.
Cotton
,
M. A.
, and
Kirwin
,
P. J.
,
1995
, “
A Variant of the low-Reynolds-Number Two-Equation Turbulence Model Applied to Variable Property Mixed Convection Flows
,”
Int. J. Heat Fluid Flow
,
16
(
6
), pp.
486
492
.10.1016/0142-727X(95)00040-W
118.
Deng
,
B.
,
Wu
,
W.
, and
Xi
,
S.
,
2001
, “
A near-Wall Two-Equation Heat Transfer Model for Wall Turbulent Flows
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
691
698
.10.1016/S0017-9310(00)00131-9
119.
Hassid
,
S.
, and
Poreh
,
M.
,
1978
, “
A Turbulent Energy Dissipation Model for Flows With Drag Reduction
,”
J. Fluid Eng.
,
100
(
1
), pp.
107
122
.10.1115/1.3448580
120.
Jones
,
W. P.
, and
Launder
,
ВE.
,
1973
, “
The Calculation of low-Reynolds-Number Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1193
1230
.10.1016/0017-9310(73)90125-7
121.
Lam
,
C. K. G.
, and
Bremhorst
,
K. A.
,
1981
, “
Modified Form of the k-ε-Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
(
3
), pp.
456
460
.10.1115/1.3240815
122.
Launder
,
В. E.
, and
Sharma
,
В. I.
,
1974
, “
Application of the Energy Dissipation Model of Turbulence to the Calculations of Flow Near a spinning disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
138
.10.1016/0094-4548(74)90150-7
123.
Norris
,
L. H.
, and
Reynolds
,
W. S.
,
1975
, “
Turbulent Channel Flow With a Moving Wavy Boundary
,” Department of Mechanical Engineering, Stanford University, Stanford, CA, Report No. FM-10.
124.
Van Driest
,
E. R.
,
1956
, “
On Turbulent Flow Near a Wall
,”
J. Aeronant. Sci.
,
23
(
11
), pp.
1007
1011
.10.2514/8.3713
125.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy—Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
126.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.10.1007/BF01061452
127.
Speziale
,
C. G.
,
Abid
,
R.
, and
Anderson
,
E. C.
,
1990
, “
A Critical Evaluation of Two-Equation Model for Near Wall Turbulence
,”
AIAA J.
, pp.
90
1481
.10.2514/3.10922
128.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Application
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
129.
Durbin
,
P. A.
,
1995
, “
Separated Flow Computations With the k-ω-v2 Model
,”
AIAA J.
,
33
(
4
), pp.
659
664
.10.2514/3.12628
130.
Wolfstain
,
M.
,
1969
, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
, pp.
301
318
.10.1016/0017-9310(69)90012-X
131.
Wilcox
,
D. C.
,
1998
, “Turbulence Modeling for CFD,” 2nd ed.,
DCW Industries
,
La Canada, CA
.
132.
Yang
,
Z.
, and
Shih
,
H. T.
,
1993
, “
New Time Scale Based kε Model for Near-Wall Turbulence
,”
AIAA J.
,
31
(
7
), pp.
1191
1198
.10.2514/3.11752
You do not currently have access to this content.