Abstract

Technology for measuring and identifying the positions and distributions of radioactive substances is important for decommissioning work sites at nuclear power stations. A three-dimensional (3D) image reconstruction method that locates radioactive substances by integrating structure-from-motion (SfM) with a Compton camera (a type of gamma-ray imager) has been developed. From the photographs captured while freely moving in an experimental environment, a 3D structural model of the experimental environment was created. By projecting the radioactive substance image acquired by the Compton camera on the 3D structural model, the positions of the radioactive substance were visualized in 3D space. In a demonstration study, the 137Cs-radiation source was successfully visualized in the experimental environment captured by the freely moving cameras. In addition, how the imaging accuracy is affected by uncertainty in the self-localization of the Compton camera processed by SfM, and by positional uncertainty in the gamma-ray incidence determined by the sensors of the Compton camera was investigated. The created map depicts the positions of radioactive substances inside radiation work environments, such as decommissioning work sites at nuclear power stations.

References

1.
Okada
,
K.
,
Tadokoro
,
T.
,
Ueno
,
Y.
,
Nukaga
,
J.
,
Ishitsu
,
T.
,
Takahashi
,
I.
,
Fujishima
,
Y.
,
Hayashi
,
K.
, and
Nagashima
,
K.
,
2014
, “
Development of a Gamma Camera to Image Radiation Fields
,”
Prog. Nucl. Sci. Tech.
,
4
, pp.
14
17
.10.15669/pnst.4.14
2.
Sato
,
Y.
,
Tanifuji
,
Y.
,
Terasaka
,
Y.
,
Usami
,
H.
,
Kaburagi
,
M.
,
Kawabata
,
K.
,
Utsugi
,
W.
,
Kikuchi
,
H.
,
Takahira
,
S.
, and
Torii
,
T.
,
2018
, “
Radiation Imaging Using a Compact Compton Camera Inside the Fukushima Daiichi Nuclear Power Station Building
,”
J. Nucl. Sci. Technol.
,
55
(
9
), pp.
965
970
.10.1080/00223131.2018.1473171
3.
Sato
,
Y.
,
Terasaka
,
Y.
,
Utsugi
,
W.
,
Kikuchi
,
H.
,
Kiyooka
,
H.
, and
Torii
,
T.
,
2019
, “
Radiation Imaging Using a Compact Compton Camera Mounted on a Crawler Robot Inside Reactor Buildings of Fukushima Daiichi Nuclear Power Station
,”
J. Nucl. Sci. Technol.
,
56
(
9–10
), pp.
801
808
.10.1080/00223131.2019.1581111
4.
Haefner
,
A.
,
Barnowski
,
R.
,
Luke
,
P.
,
Amman
,
M.
, and
Vetter
,
K.
,
2017
, “
Handheld Real-Time Volumetric 3-D Gamma-Ray Imaging
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
857
, pp.
42
49
.10.1016/j.nima.2016.11.046
5.
Wu
,
C.
,
2011
, “
VisualSFM: A Visual Structure From Motion System
,” Changchang Wu, accessed June 29, 2020, http://ccwu.me/vsfm/
6.
Takeuchi
,
K.
,
Kataoka
,
J.
,
Nishiyama
,
T.
,
Fujita
,
T.
,
Kishimoto
,
A.
,
Ohsuka
,
S.
,
Nakamura
,
S.
,
Adachi
,
S.
,
Hirayanagi
,
M.
,
Uchiyama
,
T.
,
Ishikawa
,
Y.
, and
Kato
,
T.
,
2014
, “
Stereo Compton Cameras” for the 3-D Localization of Radioisotopes
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
765
, pp.
187
191
.10.1016/j.nima.2014.04.039
7.
Sato
,
Y.
,
Terasaka
,
Y.
,
Ozawa
,
S.
,
Nakamura Miyamura
,
H.
,
Kaburagi
,
M.
,
Tanifuji
,
Y.
,
Kawabata
,
K.
, and
Torii
,
T.
,
2017
, “
Development of Compact Compton Camera for 3D Image Reconstruction of Radioactive Contamination
,”
J. Instrum.
,
12
(
11
), p.
C11007
.10.1088/1748-0221/12/11/C11007
8.
Sato
,
Y.
,
Ozawa
,
S.
,
Tanifuji
,
Y.
, and
Torii
,
T.
,
2018
, “
A Three-Dimensional Radiation Image Display on a Real Space Image Created Via Photogrammetry
,”
J. Instrum.
,
13
(
3
), p.
P03001
.10.1088/1748-0221/13/03/P03001
9.
Iwanowska
,
J.
,
Swiderski
,
L.
,
Szczesniak
,
T.
,
Sibczynski
,
P.
,
Moszynski
,
M.
,
Grodzicka
,
M.
,
Kamada
,
K.
,
Tsutsumi
,
K.
,
Usuki
,
Y.
,
Yanagida
,
T.
, and
Yoshikawa
,
A.
,
2013
, “
Performance of Cerium-Doped Gd3Al2Ga3O12 (GAGG:Ce) Scintillator in Gamma-Ray Spectrometry
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
712
, pp.
34
40
.10.1016/j.nima.2013.01.064
10.
Hamamatsu Photonics K.K.
,
2014
, “
Opto-Semiconductor Handbook
,” Chapter 3, Si APD, MPPC, Hamamatsu Photonics K.K., Hamamatsu, Japan, accessed June 29, 2020, https://www.hamamatsu-news.de/hamamatsu_optosemiconductor_handbook/
11.
Chiyoda Technol Corporation
, 2015, GAMMA Catcher, Chiyoda Technol Corporation, Tokyo, Japan, accessed June 29, 2020, http://www.c-technol.co.jp/nuclear_power/power09 (Japanese)
12.
Kataoka
,
J.
,
Kishimoto
,
A.
,
Nishiyama
,
T.
,
Fujita
,
T.
,
Takeuchi
,
K.
,
Kato
,
T.
,
Nakamori
,
T.
,
Ohsuka
,
S.
,
Nakamura
,
S.
,
Hirayanagi
,
M.
,
Adachi
,
S.
,
Uchiyama
,
T.
, and
Yamamoto
,
K.
,
2013
, “
Handy Compton Camera Using 3D Position-Sensitive Scintillators Coupled With Large-Area Monolithic MPPC Arrays
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
732
, pp.
403
407
.10.1016/j.nima.2013.07.018
13.
Kishimoto
,
A.
,
Kataoka
,
J.
,
Nishiyama
,
T.
,
Fujita
,
T.
,
Takeuchi
,
K.
,
Okochi
,
H.
,
Ogata
,
H.
,
Kuroshima
,
H.
,
Ohsuka
,
S.
,
Nakamura
,
S.
,
Hirayanagi
,
M.
,
Adachi
,
S.
,
Uchiyama
,
T.
, and
Suzuki
,
H.
,
2014
, “
Performance and Field Tests of a Handheld Compton Camera Using 3-D Position Sensitive Scintillators Coupled to Multi-Pixel Photon Counter Arrays
,”
J. Instrum.
,
9
(
11
), p.
P11025
.10.1088/1748-0221/9/11/P11025
14.
Agisoft LLC
, 2018, “
PhotoScan Professional
,” Agisoft LLC, St. Petersburg, Russia, accessed June 29, 2020, http://www.agisoft.com/pdf/photoscan-pro_1_4_en.pdf
15.
Sato
,
Y.
,
Terasaka
,
Y.
,
Ozawa
,
S.
,
Tanifuji
,
Y.
, and
Torii
,
T.
,
2018
, “
A 3D Radiation Image Display on a Simple Virtual Reality System Created Using a Game Development Platform
,”
J. Instrum.
,
13
(
8
), p.
T08011
.10.1088/1748-0221/13/08/T08011
16.
Sato
,
Y.
,
Minemoto
,
K.
,
Nemoto
,
M.
, and
Torii
,
T.
,
2020
, “
Construction of Virtual Reality System for Radiation Working Environment Reproduced by Gamma-Ray Imagers Combined With SLAM Technologies
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
976
, p.
164286
.10.1016/j.nima.2020.164286
You do not currently have access to this content.