Abstract

Among the envisaged experimental infrastructures supporting ALFRED reactor development, Fostering Alfred Construction consortium identified ATHENA as one of the facilities to address the pool thermal-hydraulic challenges and demonstrate the feasibility of the revised ALFRED configuration, along with the thermal-hydraulic performances of its main components. ATHENA is a large pool-type lead-cooled multipurpose experimental facility featuring a large size vessel (3.2 m diameter, 10 m in height), conceived to host almost 800 tons of lead to test ALFRED relevant scaled components. The test section to be installed in the main vessel includes an electrically heated core simulator (CS), made of 7 FAs, which delivers to the primary coolant a nominal thermal power of 2210 kW, a main coolant pump for lead circulation, and a countercurrent shell and tubes main heat exchanger, which tube bundle is fed by pressurized water by a dedicated secondary circuit. A preliminary analytical calculation has been performed to identify the most suitable configuration for the ATHENA heat exchanger, as well as to achieve a preliminary sizing of the component. The final layout foresees a bundle of 91 bayonet tubes, arranged in a cylindrical geometry, having an active length of 3000 mm and adopting an external double wall tube with a pressurized helium gap. A numerical model of the heat exchanger has been developed using the thermal-hydraulic system code RELAP5/Mod3.3, and a numerical sensitivity analysis on the geometrical and operating parameters has been carried out to verify the performances of the component.

References

1.
Lorusso
,
P.
,
Bassini
,
S.
,
Del Nevo
,
A.
,
Di Piazza
,
I.
,
Giannetti
,
F.
,
Tarantino
,
M.
, and
Utili
,
M.
,
2018
, “
GEN-IV LFR Development: Status & Perspectives
,”
Prog. Nucl. Energy
,
105
, pp.
318
331
.10.1016/j.pnucene.2018.02.005
2.
Gen IV International Forum
. “Generation IV Goals,” accessed May 5, 2022, https://www.gen-4.org/gif/jcms/c_9502/generation-iv-goals
3.
Pacio
,
J.
,
Van Tichelen
,
K.
,
Eckert
,
S.
,
Wondrak
,
T.
,
Di Piazza
,
I.
,
Lorusso
,
P.
,
Tarantino
,
M.
,
Daubner
,
M.
,
Litfin
,
K.
,
Ariyoshi
,
G.
,
Obayashi
,
H.
, and
Sasa
,
T.
,
2022
, “
Advanced Thermal-Hydraulic Experiments and Instrumentation for Heavy Liquid Metal Reactors
,”
Nucl. Eng. Des.
,
399
, p. 112010.10.1016/j.nucengdes.2022.112010
4.
Frignani
,
M.
,
Alemberti
,
A.
, and
Tarantino
,
M.
,
2019
, “
ALFRED: A Revised Concept to Improve Pool Related Thermal-Hydraulics
,”
Nucl. Eng. Des.
,
355
, p. 110359.10.1016/j.nucengdes.2019.110359
5.
Alemberti
,
A.
,
Frignani
,
M.
,
Villabruna
,
G.
,
Agostini
,
P.
,
Grasso
,
G.
,
Tarantino
,
M.
,
Turcu
,
I.
,
Constantin
,
M.
,
Diaconu
,
D.
,
Di Gabriele
,
F.
,
Witzanyová
,
N.
, and
Kryková
,
M.
,
2015
, “
ALFRED and the Lead Technology Research Infrastructure
,”
Proceedings of European Research Reactor Conference (RRFM) 2015
,
Bucharest, Romania
, Apr. 19–23,
Paper No. #RRFM2015-A0036.
6.
Frignani
,
M.
,
Alemberti
,
A.
,
Villabruna
,
G.
,
Adinolfi
,
R.
,
Tarantino
,
M.
,
Grasso
,
G.
,
Pizzuto
,
A.
,
Turcu
,
I.
, and
Valeca
,
S.
,
2017
, “
ALFRED: A Strategic Vision for LFR Deployment
,”
Proceedings of ANS Winter-Meeting
,
Washington, DC
, Oct. 29–Nov. 2, 117(1), pp.
1468
1471
.
7.
Frignani
,
M.
,
Alemberti
,
A.
,
Villabruna
,
G.
,
Grasso
,
G.
,
Tarantino
,
M.
,
Constantin
,
M.
,
Turcu
,
I.
,
Valeca
,
S.
,
Di Gabriele
,
F.
, and
Romanello
,
V.
,
2017
, “
Falcon Advancements Towards the Implementation of the ALFRED Project
,” International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17), Yekaterinburg, Russia, June 26–29, Paper No.
IAEA-CN245-485
.https://media.superevent.com/documents/20170620/210fee098e9232d933a874e4de78a686/fr17-485.pdf
8.
Tarantino
,
M.
,
Angiolini
,
M.
,
Bassini
,
S.
,
Cataldo
,
S.
,
Ciantelli
,
C.
,
Cristalli
,
C.
,
Del Nevo
,
A.
,
Di Piazza
,
I.
,
Diamanti
,
D.
,
Eboli
,
M.
,
Fiore
,
A.
,
Grasso
,
G.
,
Lodi
,
F.
,
Lorusso
,
P.
,
Marinari
,
R.
,
Martelli
,
D.
,
Papa
,
F.
,
Sartorio
,
C.
,
Utili
,
M.
, and
Venturini
,
A.
,
2021
, “
Overview on Lead-Cooled Fast Reactor Design and Related Technologies Development in ENEA
,”
Energies
,
14
(
5157
), pp.
1
12
.10.3390/en14165157
9.
Del Moro
,
T.
,
Lorusso
,
P.
,
Giannetti
,
F.
,
Tarantino
,
M.
,
Caramello
,
M.
, and
Vitale Di Maio
,
D.
,
2022
, “
ATHENA Main Heat Exchanger Conceptual Design and Thermal-Hydraulic Assessment With RELAP5 Code
,”
ASME
Paper No. ICONE29-91997.10.1115/ICONE29-91997
10.
Information System Laboratories
,
2003
, RELAP5/Mod3.3 code manual volume I: Code structure, system models, and solution methods, July, Idaho Falls, ID.
11.
Information System Laboratories
,
2003
, RELAP5/Mod3.3 code manual volume II: User's guide and input requirements, Idaho Falls, ID.
12.
Information System Laboratories
,
2003
, RELAP5/Mod3.3 code manual volume II: Appendix A input requirements, Idaho Falls, ID.
13.
Information System Laboratories
,
2003
, RELAP5/Mod3.3 code manual volume VII: Summaries and reviews of independent code assessment reports, December, Idaho Falls, ID.
14.
Information System Laboratories
, 2003, RELAP5/Mod3.3 code manual volume V: User's guidelines, Idaho Falls, ID.
15.
Tarantino
,
M.
,
Agostini
,
P.
,
Benamati
,
G.
,
Coccoluto
,
G.
,
Gaggini
,
P.
,
Labanti
,
V.
,
Venturi
,
G.
,
Class
,
A.
,
Liftin
,
K.
,
Forgione
,
N.
, and
Moreau
,
V.
,
2011
, “
Integral Circulation Experiment: Thermal-Hydraulic Simulator of a Heavy Liquid Metal Reactor
,”
J. Nucl. Mater.
,
415
(
3
), pp.
433
448
.10.1016/j.jnucmat.2011.04.033
16.
Lorusso
,
P.
,
Pesetti
,
A.
,
Tarantino
,
M.
,
Narcisi
,
V.
,
Giannetti
,
F.
,
Forgione
,
N.
, and
Del Nevo
,
A.
,
2019
, “
Experimental Analysis of Stationary and Transient Scenarios of ALFRED Steam Generator Bayonet Tube in CIRCE-HERO Facility
,”
Nucl. Eng. Des.
,
352
(
1
), p.
110169
.10.1016/j.nucengdes.2019.110169
17.
Lorusso
,
P.
,
Di Piazza
,
I.
,
Martelli
,
D.
,
Musolesi
,
A.
, and
Tarantino
,
M.
,
2021
, “
Design of a Novel Test Section for the LFR Development: The CIRCE-THETIS Facility
,”
28th International Conference on Nuclear Engineering (ICONE28), Virtual Conference
, August 4–6, Vol.
2
, Paper No. #V002T07A032.
18.
Tarantino
,
M.
,
Lorusso
,
P.
,
Del Nevo
,
A.
,
Di Piazza
,
I.
,
Giannetti
,
F.
, and
Martelli
,
D.
,
2021
, “
Preliminary Design of a Helical Coil Steam Generator Mock-Up for the CIRCE Facility for the Development of DEMO LiPb Heat Exchanger
,”
Fusion Eng. Des.
,
169
, p. 112459.10.1016/j.fusengdes.2021.112459
19.
Lorusso
,
P.
,
Pesetti
,
A.
,
Barone
,
G.
,
Castellitti
,
D.
,
Caruso
,
G.
,
Forgione
,
N.
,
Giannetti
,
F.
,
Martelli
,
D.
,
Rozzia
,
D.
,
Van Ticheken
,
K.
, and
Tarantino
,
M.
,
2019
, “
MYRRHA Primary Heat Exchanger Experimental Simulations on CIRCE-HERO
,”
Nucl. Eng. Des.
,
353
, p. 110270.10.1016/j.nucengdes.2019.110270
20.
Lorusso
,
P.
,
Pesetti
,
A.
, and
Tarantino
,
M.
,
2018
, “
ALFRED Steam Generator Assessment: Design and Pre-Test Analysis of HERO Experiment
,”
ASME
Paper No. ICONE26-81824
.10.1115/ICONE26-81824
21.
Lorusso
,
P.
,
Del Nevo
,
A.
,
Narcisi
,
V.
,
Giannetti
,
F.
,
Caruso
,
G.
,
Zwijsen
,
K.
,
Breijder
,
P. A.
,
Hamidouche
,
T.
,
Castelliti
,
D.
,
Rozzia
,
D.
, and
Tarantino
,
M.
,
2021
, “
Total Loss of Flow Benchmark in CIRCE-HERO Integral Test Facility
,”
Nucl. Eng. Des.
,
376
, p.
111086
.10.1016/j.nucengdes.2021.111086
22.
Del Moro, T., Giannetti, F., Tarantino, M., Lorusso, P., Caramello, M., Di Maio, D. V., and Constantin, M., 2023, “Thermal-Hydraulic Characterization and Numerical Modelling with RELAP5 Code of ATHENA Secondary Loop,” Nuclear Technol., Paper No. UNCT 2183025.
23.
Magnus Holmgren, 2022, “X Steam, Thermodynamic Properties of Water and Steam,” accessed Jan. 20, 2022, https://www.mathworks.com/matlabcentral/fileexchange/9817-x-steam-thermodynamic-properties-of-water-and-steam
24.
OECD/NEA Nuclear Science Committee
,
2015
,
Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies
,
OECD Publishing
,
Paris, France
, p.
950
.
25.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Heat Transfer in Automobile Radiators of the Tubular Type
,
University of California Press
,
Berkeley, CA
, vol.
2
, pp.
443
461
.
26.
Ushakov
,
P. A.
,
Zhukov
,
A. V.
, and
Matyukhin
,
N. M.
,
1977
,
Heat Transfer to Liquid Metals in Regular Arrays of Fuel Elements, High Temperature
,
Teplofizika Vysokikh Temp.
,
15
, pp.
868
873
[Teplofizika Vysokikh Temperatur, 15(5), 1027–1033 (1977)].
27.
Rozzia
,
D.
,
Fasano
,
G.
,
Di Piazza
,
I.
, and
Tarantino
,
M.
,
2015
, “
Experimental Investigation on Powder Conductivity for the Application to Double Wall Heat Exchanger (NACIE-UP)
,”
Nucl. Eng. Des.
,
283
, pp.
100
113
.10.1016/j.nucengdes.2014.06.037
28.
Rozzia
,
D.
,
Forgione
,
N.
,
Fasano
,
G.
,
Tarantino
,
M.
,
Del Nevo
,
A.
, and
Alemberti
,
A.
,
2015
, “
Experimental Investigation on Powder Conductivity for the Application to Double Wall Bayonet Tube Bundle Steam Generator
,” Proceedings of the 24th International Conference Nuclear Energy for New Europe (
NENE
),
Portoroz, Slovenia
, Sept. 14–17,
Paper No. #214.https://arhiv.djs.si/proc/nene2015/pdf/NENE2015_214.pdf
29.
Holman
,
J. P.
,
2002
,
Heat Transfer
, 9th ed.,
McGraw-Hill International Book Company
,
Boston, MA
.
30.
Tarantino
,
M.
,
Del Nevo
,
A.
,
Forgione
,
N.
, and
Bandini
,
G.
,
2012
, “Post Test Analysis of ICE Tests,”
ASME
Paper No. ICONE20-POWER2012-54952.10.1115/ICONE20-POWER2012-54952
31.
Martelli
,
E.
,
Giannetti
,
F.
,
Ciurluini
,
C.
,
Caruso
,
G.
, and
Del Nevo
,
A.
,
2019
, “
Thermal-Hydraulic Modeling and Analyses of the Water-Cooled EU DEMO Using RELAP5 System Code
,”
Fusion Eng. Des.
,
146
(
Part A
), pp.
1121
1125
.10.1016/j.fusengdes.2019.02.021
32.
Forgione
,
N.
,
Martelli
,
D.
,
Barone
,
G.
,
Giannetti
,
F.
,
Lorusso
,
P.
,
Hollands
,
T.
,
Papukchiev
,
A.
,
Polidori
,
M.
,
Cervone
,
A.
, and
Di Piazza
,
I.
,
2019
, “
Post-Test Simulations for the NACIE-UP Benchmark by STH Codes
,”
Nucl. Eng. Des.
,
353
, p.
110279
.10.1016/j.nucengdes.2019.110279
You do not currently have access to this content.