Abstract

Active special nuclear material (SNM) photoneutron interrogation research with acoustically tensioned metastable fluid detector (ATMFD) sensor technology is discussed, which provides evidence for enabling real-time detection of SNM even when deployed under extreme 15,000 R h−1 (9 MeV endpoint) X-ray beams. Experiments to detect 3.2 kg depleted uranium (DU) are described with the use of two designs of the economical acoustically tensioned metastable fluid detector (E-ATMFD), viz., E-ATMFD.Ver.0 and E-ATMFD.Ver.1, respectively, at standoffs ranging from 0.1 m to 10 m—including with the E-ATMFD directly within the interrogating beam. Under similar conditions and with 100% photon rejection (i.e., 0 cpm with beam on, and without SNM), the E-ATMFD.Ver.1 design operating at ∼0.9 W of drive power was shown capable of ∼6× (600%) higher gain over E-ATMFD.Ver.0 operating at ∼7 W (with beam on and with SNM). The sensitivity gain rises to ∼27× (i.e., 2700%) with the E-ATMFD.Ver.1 operating at 0.99 W and a background count rate of ∼1 cpm. The E-ATMFD.Ver.1 demonstrated 100% photon blindness (0 cpm) while operating at ∼0.56 W drive power and placed directly within the beam under 15,000 R/h; including the SNM target led to a count rate of up to 50 cpm—revealing the E-ATMFD.Ver.1 is potential field capable of detecting U-based SNMs within seconds from photofission neutron signals, even when deployed directly within the intense (15,000 R/h) high energy (9 MeV endpoint X-Ray) interrogating photon beam.

References

1.
National Academy of Engineering,
2017
, NAE Grand Challenges for EngineeringTM,
National Academy of Sciences
,
Washington, DC
, accessed Oct., 2020, https://www.nae.edu/20782/grand-challenges-project
2.
Kouzes
,
R. T.
,
Siciliano
,
E.
,
Edward
,
R.
,
Tanner
,
J.
, and
Warren
,
G.
,
2019
, “
Testing Requirements for Active Interrogation Systems
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
922
, pp.
222
229
.10.1016/j.nima.2018.12.088
3.
Taleyarkhan
,
R. P.
,
Lapinskas
,
J.
, and
Xu
,
Y.
,
2008
, “
Tensioned Metastable Fluids and Nanoscale Interactions With External Stimuli—Theoretical-Cum-Experimental Assessments and Nuclear Engineering Applications
,”
Nucl. Eng. Des.
,
238
(
7
), pp.
1820
1827
.10.1016/j.nucengdes.2007.10.019
4.
Taleyarkhan
,
R. P.
,
Hagen
,
A.
,
Sansone
,
A.
, and
Archambault
,
B.
,
2016
, “
Live Demonstration: Femto-to-Macro Scale Interdisciplinary Sensing With Tensioned Metastable Fluid Detectors
,”
Proceedings of IEEE SENSORS
, Orlando, FL, Nov., pp.
1
1
.10.1109/ICSENS.2016.7808563
5.
Archambault
,
B.
,
Hagen
,
A.
,
Grimes
,
T. F.
, and
Taleyarkhan
,
R.
,
2018
, “
Large-Array Special Nuclear Material Sensing With Tensioned Metastable Fluid Detectors
,”
IEEE Sens. J.
,
18
(
19
), pp.
7868
7874
.10.1109/JSEN.2018.2845344
6.
Boyle
,
N.
,
Archambault
,
N. B.
,
Hemesath
,
M.
, and
Taleyarkhan
,
R. P.
,
2019
, “
Radon and Progeny Detection Using Tensioned Metastable Fluid Detectors
,”
Health Phys.
,
117
(
4
), pp.
434
442
.10.1097/HP.0000000000001066
7.
Taleyarkhan
,
R. P.
,
2020
, “
Monitoring Neutron Radiation in Extreme Gamma/X-Ray Radiation Fields
,”
Sensors
,
20
(
3
), p.
640
.10.3390/s20030640
8.
Boyle
,
N.
,
2020
, “Interrogation via Alpha and Neutron Signatures of Special Nuclear Material Using Acoustically and Centrifugally Tensioned Metastable Fluid Detectors,” Ph.D. dissertation,
Purdue University
,
West Lafayette, IN
.
9.
Boyle
,
N.
,
Archambault
,
B.
, and
Taleyarkhan
,
R. P.
,
2020
, “
High Energy Photo-Neutron Interrogation of Uranium With TMFDs
,”
Sens. Transducers
,
245
(
6
), pp.
36
40
.
10.
Ozerov
,
S.
,
Hagen
,
A. R.
,
Archambault
,
B. C.
,
Sansone
,
A. A.
,
Boyle
,
N. M.
,
Grimes
,
T. F.
,
Rancilio
,
N. J.
,
Plantenga
,
J. M.
, and
Taleyarkhan
,
R. P.
,
2022
, “
Clinical 6 MV X-Ray Facility Photon-Neutron/Fission Interrogations With TMFD Sensors
,”
Nucl. Instr. Methods Phys. Res. A
,
1029
, p.
166395
.10.1016/j.nima.2022.166395
11.
Hagen
,
A.
,
2018
, “
Detection and Interdiction of Shielded and Unshielded Special Nuclear Material Using Tensioned Metastable Fluid Detectors
,” Ph.D. dissertation,
Purdue University
, West Lafayette, IN.
12.
Gozani
,
T.
,
Stevenson
,
J.
, and
King
,
M.
,
2011
, “
Neutron Threshold Activation Detectors (TAD) for the Detection of Fissions
,”
Nucl. Instrum. Methods Phys. Res. A
,
652
(
1
), pp.
334
337
.10.1016/j.nima.2011.01.029
13.
Gozani
,
T.
,
King
,
M.
,
Shaw
,
J.
, and
Stevenson
,
J.
,
2012
, “
Systems and Methods for Detecting Nuclear Material
,” U.S. Patent No. US2012/0155592 A1.
14.
Sher
,
R.
,
Halpern
,
J.
, and
Mann
,
A. K.
,
1951
, “
Photoneutron Thresholds
,”
Phys. Rev.
,
84
(
3
), pp.
387
394
.10.1103/PhysRev.84.387
15.
Wapstra
,
A. H.
, and
Bos
,
K.
,
1977
, “
The 1977 Atomic Mass Evaluation
,”
At. Data Nucl. Data Tables
,
19
(
3
), pp.
215
275
.10.1016/0092-640X(77)90021-3
You do not currently have access to this content.