The paper introduces a simplified coupled computational fluid dynamics–boundary element method–finite element method (CFD–BEM–FEM)-based approach to study the effect green water induced loading on global structural responses such as bending moment and shear force. The proposed numerical scheme is based on a coupled three-step model. Initially, rigid modes of structural motions are calculated adopting a three-dimensional (3D) time domain panel method without incorporating the green water loading. The time histories of the green water impact on the deck are computed using a finite volume-based CFD tool with these precalculated rigid body motions. Finally, the problem of fluid–structure interaction is solved by considering the green water force as an external input. The direct integration scheme (i.e., Newmark–Beta method in the time domain) is employed to solve this structural problem modeled with one-dimensional FEM. To check the robustness and efficacy of the proposed model and to evaluate green water effect on the structure and vice versa, a large container vessel with and without forward speed is investigated. The impact is studied with respect to motion, shear force, and bending moment. The results confirm that the impact of green water and structural flexibility is significant. Therefore, these effects must be considered while designing a container ship. Also, from the results, it appears that the present three-step model is an effective, efficient, and useful practical tool to predict such effects.

References

1.
Buchner
,
B.
,
1995
, “
On the Impact of Green Water Loading on Ship and Offshore Unit Design
,”
International Symposium Practical Design of Ships and Mobile Units (PRADS'95)
,
Seoul, South Korea
,
Sept. 17–22
, pp.
430
443
.
2.
Buchner
,
B.
,
1995
, “
The Impact of Green Water on FPSO Design
,”
Offshore Technology Conference
(
OTC
),
Houston, TX
,
Jan. 1
, pp.
45
47
.http://www.marin.nl/upload_mm/8/6/a/1803130249_1999999096_1995-OTC-7698_Buchner.pdf
3.
Greco
,
M.
,
Landrini
,
M.
, and
Faltinsen
,
O. M.
,
2004
, “
Impact Flows and Loads on Ship-Deck Structures
,”
J. Fluids Struct.
,
19
(
3
), pp.
251
275
.
4.
Faltinsen
,
O. M.
,
Landrini
,
M.
, and
Greco
,
M.
,
2004
, “
Slamming in Marine Applications
,”
J. Eng. Math.
,
48
(
3/4
), pp.
187
217
.
5.
Fekken
,
G.
,
Veldman
,
A. E. P.
, and
Buchner
,
B.
,
1999
, “
Simulation of Green Water Loading Using the Navier-Stokes Equations
,”
Seventh International Conference Numerical Ship Hydrodynamics
,
J.
Piquet
, ed.,
Nantes, France
,
July 19
, pp.
6.3-1
6.3-9
.
6.
Kleefsman
,
K. T.
,
Fekken
,
G.
,
Veldman
,
A. E.
,
Bunnik
,
T.
,
Buchner
,
B.
, and
Iwanowski
,
B.
,
2002
, “
Prediction of Green Water and Wave Loading Using a Navier–Stokes Based Simulation Tool
,”
ASME
Paper No. OMAE2002-28480.
7.
Kleefsman
,
K. M. T.
,
Loots
,
G. E.
,
Veldman
,
A. E. P.
,
Buchner
,
B.
,
Bunnik
,
T.
, and
Falkenberg
,
E.
,
2005
, “
The Numerical Simulation of Green Water Loading Including Vessel Motions and the Incoming Wave Field
,”
ASME
Paper No. OMAE2005-67448.
8.
Zhu
,
R.
,
Miao
,
G.
, and
Lin
,
Z.
,
2009
, “
Numerical Research on FPSOs With Green Water Occurrence
,”
J. Ship Res.
,
53
(
1
), pp.
7
18
.https://www.researchgate.net/publication/233576115_Numerical_Research_on_FPSOs_With_Green_Water_Occurrence
9.
Kudupudi
,
R. B.
, and
Datta
,
R.
,
2017
, “
Numerical Investigation of the Effect Due to Vessel Motion on Green Water Impact on Deck
,”
ASME
Paper No. OMAE2017-61054.
10.
Pham
,
X. P.
, and
Varyani
,
K. S.
,
2005
, “
Evaluation of Green Water Loads on High-Speed Containership Using CFD
,”
Ocean Eng.
,
32
(
5–6
), pp.
571
585
.
11.
Hirdaris
,
S. E.
,
Price
,
W. G.
, and
Temarel
,
P.
,
2003
, “
Two-and Three-Dimensional Hydroelastic Modelling of a Bulker in Regular Waves
,”
Mar. Struct.
,
16
(
8
), pp.
627
658
.
12.
Senjanović
,
I.
,
Malenica
,
Š.
, and
Tomas
,
S.
,
2008
, “
Investigation of Ship Hydroelasticity
,”
Ocean Eng.
,
35
(
5–6
), pp.
523
535
.
13.
Senjanović
,
I.
,
Malenica
,
Š.
, and
Tomašević
,
S.
,
2009
, “
Hydroelasticity of Large Container Ships
,”
Mar. Struct.
,
22
(
2
), pp.
287
314
.
14.
Kim
,
Y.
,
Kim
,
K. H.
, and
Kim
,
Y.
,
2009
, “
Analysis of Hydroelasticity of Floating Shiplike Structure in Time Domain Using a Fully Coupled Hybrid BEM-FEM
,”
J. Ship Res.
,
53
(
1
), pp.
31
47
.https://www.researchgate.net/publication/233716188_Analysis_of_Hydroelasticity_of_Floating_Shiplike_Structure_in_Time_Domain_Using_a_Fully_Coupled_Hybrid_BEM-FEM
15.
Kim
,
K. H.
,
Bang
,
J. S.
,
Kim
,
J. H.
,
Kim
,
Y.
,
Kim
,
S. J.
, and
Kim
,
Y.
,
2013
, “
Fully Coupled BEM-FEM Analysis for Ship Hydroelasticity in Waves
,”
Mar. Struct.
,
33
, pp.
71
99
.
16.
Sengupta
,
D.
,
Pal
,
S. K.
, and
Datta
,
R.
,
2017
, “
Hydroelasticity of a 3D Floating Body Using a Semi Analytic Approach in Time Domain
,”
J. Fluids Struct.
,
71
, pp.
96
115
.
17.
Rajendran
,
S.
, and
Soares
,
C. G.
,
2016
, “
Numerical Investigation of the Vertical Response of a Containership in Large Amplitude Waves
,”
Ocean Eng.
,
123
, pp.
440
451
.
18.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.
19.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
, Watertown, MA.
20.
Liu
,
M.
, and
Gorman
,
D. G.
,
1995
, “
Formulation of Rayleigh Damping and Its Extensions
,”
Comput. Struct.
,
57
(
2
), pp.
277
285
.
21.
Liu
,
S. W.
,
Bai
,
R.
, and
Chan
,
S. L.
,
2016
, “
Dynamic Time-History Elastic Analysis of Steel Frames Using One Element per Member
,”
Structures
,
8
, pp.
300
309
.
22.
Pal
,
S. K.
,
Datta
,
R.
, and
Sunny
,
M. R.
,
2018
, “
Fully Coupled Time Domain Solution for Hydroelastic Analysis of a Floating Body
,”
Ocean Eng.
,
153
, pp.
173
184
.
23.
Lin
,
W. M.
, and
Yue
,
D. K. P.
,
1990
, “
Numerical Solutions for Large-Amplitude Ship Motion in the Time Domain
,”
18th Symposium on Naval Hydrodynamics
, Ann Arbor, MI, pp.
41
66
.https://trid.trb.org/view.aspx?id=439614
24.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
, Essex, UK.
25.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
26.
Buchner
,
B.
,
2002
, “
Green Water on Ship-Type Offshore Structures
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
You do not currently have access to this content.