Abstract

Production and deep-sea mining risers should have sufficient flexibility to avoid severe loading due to vessel motions. Free hanging catenary is the simplest and cheapest configuration because of the ease of installation and the minimal requirements for subsea infrastructure. The interaction of the inner flow with the moving riser dominates the dynamic stability of the system. In the present work, the motion equation for a long, multilayered, fiber-reinforced polymeric (FRP) flexible riser is formulated, and a numerical method for critical inner flow velocities causing buckling in risers is proposed. Taking into account the motion equation, the physics of the inner flow-induced buckling phenomena is analyzed and a detailed interpretation of the terms of the motion equation is carried out. With the aid of transfer matrices and finite elements, the dynamic buckling modes and the natural frequencies are determined. It is proved that the dynamic stability of the riser is affected by the balance of the elastic flexural restoring force, the centrifugal force of the fluid flow in the curved portions, the Coriolis force of the fluid, the inertial force of the fluid and pipe mass, and the damping due to the effect of the surrounding water.

References

1.
How
,
B. E.
,
Ge
,
S. S.
, and
Choo
,
Y. S.
,
2009
, “
Active Control of Flexible Marine Risers
,”
J. Sound Vib.
,
320
(
4–5
), pp.
758
776
. 10.1016/j.jsv.2008.09.011
2.
Pan
,
J.
, and
Do
,
K. D.
,
2008
, “
Boundary Control of Transverse Motion of Marine Risers With Actuator Dynamics
,”
J. Sound Vib.
,
318
(
4–5
), pp.
768
791
. 10.1016/j.jsv.2008.05.009
3.
Köhne
,
M.
,
1976
, “
Simulation and Optimal Control of Hauling Pipes in Ocean Mining Systems
,”
2nd IFAC Symposium on Automation in Mining, Mineral and Metal Processing
,
Johannesburg
,
Sept. 13–17
, pp.
9
18
.
4.
Athisakul
,
C.
,
Monprapussorn
,
T.
, and
Chucheepsakul
,
S.
,
2011
, “
A Variational Formulation for Three-Dimensional Analysis of Extensible Marine Riser Transporting Fluid
,”
Ocean Eng.
,
38
(
4
), pp.
609
620
. 10.1016/j.oceaneng.2010.12.012
5.
Lei
,
S.
,
Zheng
,
X. Y.
, and
Chen
,
D. Y.
,
2017
, “
Instability Analysis of Parametrically Excited Marine Risers by Extended Precise Integration Method
,”
Int. J. Struct. Stab. Dyn.
,
17
(
8
), p.
1750096
. 10.1142/S0219455417500961
6.
Bowen
,
F.
, and
Decheng
,
W.
,
2017
, “
Numerical Study of Vibrations of a Vertical Tension Riser Excited at the Top End
,”
J. Ocean Eng. Sci.
,
2
(
4
), pp.
268
278
. 10.1016/j.joes.2017.09.001
7.
Song
,
L.
,
Wen-Shou
,
Z.
,
Jia-Hao
,
L.
,
Qian-Jin
,
Y.
,
Kennedy
,
D.
, and
Williams
,
F. W.
,
2014
, “
Frequency Domain Response of a Parametrically Excited Riser Under Random Wave Forces
,”
J. Sound Vib.
,
333
(
14
), pp.
485
498
. 10.1016/j.jsv.2014.02.002
8.
Nguyen
,
T. L.
,
Do
,
K. D.
, and
Pan
,
J.
,
2013
, “
Boundary Control of Two-Dimensional Marine Risers With Bending Couplings
,”
J. Sound Vib.
,
332
(
16
), pp.
3605
3622
. 10.1016/j.jsv.2013.02.026
9.
Chatjigeorgiou
,
I. K.
,
2010
, “
On the Effect of Internal Flow on Vibrating Catenary Risers in Three Dimensions
,”
Eng. Struct.
,
32
(
10
), pp.
3313
3329
. 10.1016/j.engstruct.2010.07.004
10.
Pavlou
,
D.
,
2018
, “
Flow-Riser Interaction in Deep-Sea Mining: An Analytic Approach for Multi-Layered FRP Risers
,”
ASME
Paper No. OMAE2018-78576
.
11.
Kuiper
,
G. L.
, and
Metrikine
,
A. V.
,
2005
, “
Dynamic Stability of a Submerged Free-Hanging Riser Conveying Fluid
,”
J. Sound Vib.
,
280
(
3–5
), pp.
1051
1065
. 10.1016/j.jsv.2004.09.024
12.
Païdoussis
,
M. P.
, and
Luu
,
T. P.
,
1985
, “
Dynamics of a Pipe Aspirating Fluid Such as Might be Used in Ocean Mining
,”
ASME J. Energy Resour. Technol.
,
107
(
2
), pp.
250
255
. 10.1115/1.3231185
13.
Sällström
,
J. H.
, and
Ȧkesson
,
,
1990
, “
Fluid-conveying Damped Rayleigh-Timoshenko Beams in Transverse Vibration Analysed by Use of an Exact Finite Element—Part I: Theory
,”
J. Fluids Struct.
,
4
(
6
), pp.
561
572
. 10.1016/0889-9746(90)90202-G
14.
Païdoussis
,
M. P.
,
Semler
,
C.
, and
Wadham-Gagnon
,
M.
,
2005
, “
A Reappraisal of Why Aspirating Pipes do Not Flutter at Infinitesimal Flow
,”
J. Fluids Struct.
,
20
(
6
), pp.
871
890
. 10.1016/j.jfluidstructs.2005.03.009
15.
Païdoussis
,
M. P.
,
1998
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
, Vol.
1
,
Academic Press
,
London
.
16.
Pavlou
,
D. G.
,
2013
,
Composite Materials in Piping Applications
,
Destech Publications
,
Lancaster
, PA.
17.
Pavlou
,
D. G.
,
2016
, “
Transfer Matrices Analysis of FRP Pipelines Stability
,”
Int. Rev. Mech. Eng.
,
10
(
3
), pp.
165
172
.
18.
Pavlou
,
D. G.
,
2015
, “
Undamped Vibration of Laminated Fiber-Reinforced Polymer Pipes in Water Hammer Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
6
), p.
061701
. 10.1115/1.4031669
19.
Pavlou
,
D. G.
,
2016
, “
Dynamic Response of a Multi-Layered FRP Cylindrical Shell Under Unsteady Loading Conditions
,”
Eng. Struct.
,
112
, pp.
256
264
. 10.1016/j.engstruct.2016.01.023
20.
Bažant
,
Z.
, and
Cedolin
,
L.
,
2003
,
Stability of Structures
,
Dover Publications
,
Mineola, NY
.
21.
Pavlou
,
D. G.
,
2016
, “
Flow-induced Instability of Multi-Layered Anisotropic Pipelines
,”
Int. J. Comput. Methods Exp. Meas.
,
4
(
4
), pp.
543
553
.
22.
Pavlou
,
D. G.
,
2015
,
Essentials of the Finite Element Method
,
Academic Press
,
New York
.
You do not currently have access to this content.