Abstract

Wave-induced liquefaction in seabed may adversely impact the stability and bearing capacity of the foundation elements of coastal structures. The interaction of wave, seabed, and structure has been studied mostly for only mildly sloping seabed (<5deg) using a decoupled approach. However, some of the marine hydrokinetic devices (MHKs) may be built on or anchored to the seabed with significant steepness. The wave-induced response and instantaneous liquefaction within sloping seabed supporting a small structure (representing a small MHK device) are evaluated herein by developing an almost fully coupled finite element model. The effects of coupling approach on the stress response and liquefaction of the seabed soils are investigated. Subsequently, post-liquefaction deformation of seabed soils around the structure is assessed. The poroelasticity equations governing the seabed response coupled with those for other domains are solved simultaneously. For post-liquefaction analysis, the soil is modeled as elastic-perfectly plastic material. The development of instantaneously liquefied zones near the foundation is studied in terms of seabed steepness and wave parameters. The changes in the effective stress paths due to the development of liquefied zones are evaluated in view of the soil's critical state. The results indicate that the decoupled solution yields significantly larger stresses and liquefaction zones around the structure. The seabed response and the liquefaction zones become smaller for steeper slopes. The presence of liquefied zones brings the stress state closer to the failure envelope, reduces the confining stresses, and induces larger plastic strains around the foundation element.

References

1.
Silvester
,
R.
, and
Hsu
,
J. R. C.
,
1989
, “
Sines Revisited
,”
J. Waterw. Port, Coast. Ocean Eng.
,
115
(
3
), pp.
327
343
.
2.
Sam Smith
,
A. W.
, and
Gordon
,
A. D.
,
1983
, “
Large Breakwater Toe Failures
,”
J. Waterw. Port, Coast. Ocean Eng.
,
109
(
2
), pp.
253
255
.
3.
Lundgren
,
H.
,
Lindhardt
,
J. H. C.
, and
Romhild
,
C. J.
,
1989
, “
Stability of Breakwaters on Porous Foundation
,”
12th International Conference Soil Mechanics and Foundation Engineering
, pp.
451
454
.
4.
Robertson
,
I. N.
,
Riggs
,
R. H.
,
Yim
,
S. C. S.
, and
Young
,
Y. L.
,
2007
, “
Lessons From Hurricane Katrina Storm Surge on Bridges and Buildings
,”
J. Waterw. Port, Coast. Ocean Eng.
,
133
(
6
), pp.
463
483
.
5.
Okusa
,
S.
,
1985
, “
Wave-Induced Stresses in Unsaturated Submarine Sediments
,”
Geotechnique
,
35
(
4
), pp.
517
532
.
6.
Rafiei
,
A.
,
Rahman
,
M. S.
, and
Gabr
,
M. A.
,
2019
, “
Coupled Analysis for Response and Instability of Sloping Seabed Under Wave Action
,”
Appl. Ocean Res.
,
88
, pp.
99
110
.
7.
de Groot
,
M. B.
,
Kudella
,
M.
,
Meijers
,
P.
, and
Oumeraci
,
H.
,
2006
, “
Liquefaction Phenomena Underneath Marine Gravity Structures Subjected to Wave Loads
,”
J. Waterw. Port, Coast. Ocean Eng.
,
132
(
4
), pp.
325
335
.
8.
Rafiei
,
A.
,
Gabr
,
M. A.
,
Rahman
,
M. S.
, and
Ghayoomi
,
M.
,
2021
, “
Cyclic Response and Instability Analysis of Seabed With Cohesionless Soils Due to Surging Waves
,”
Proceedings of the 40th International Conference on Ocean, Offshore and Arctic Engineering (OMAE)
,
Virtual
,
June 21–23
.
9.
Xiao
,
H.
,
Young
,
Y. L.
, and
Prévost
,
J. H.
,
2010
, “
Hydro- and Morpho-dynamic Modeling of Breaking Solitary Waves Over a Fine Sand Beach. Part II: Numerical Simulation
,”
Mar. Geol.
,
269
(
3–4
), pp.
119
131
.
10.
Zhang
,
H.
, and
Jeng
,
D. S.
,
2005
, “
An Integrated Three-Dimensional Model for Wave-Induced Seabed Response in a Porous Seabed. I. A Sloping Seabed
,”
Ocean Eng.
,
32
(
5–6
), pp.
701
729
.
11.
Liao
,
C.
,
Jeng
,
D.
,
Lin
,
Z.
,
Guo
,
Y.
, and
Zhang
,
Q.
,
2018
, “
Wave (Current)-Induced Pore Pressure in Offshore Deposits: A Coupled Finite Element Model
,”
J. Mar. Sci. Eng.
,
6
(
3
), p.
83
.
12.
Jeng
,
D. S.
,
2001
, “
Wave Dispersion Equation in a Porous Seabed
,”
Ocean Eng.
,
28
(
12
), pp.
1585
1599
.
13.
Rafiei
,
A.
,
Gabr
,
M. A.
, and
Rahman
,
M. S.
,
2019
, “
Wave-Induced Instability of Seabed Beneath Geotextile Sand Containers
,”
Geosynthetics Conference
,
Houston, TX
,
Feb. 10–13
.
14.
Ulker
,
M. B. C.
,
Tatlioglu
,
E.
, and
Lav
,
M. A.
,
2018
, “
Dynamic Response and Liquefaction Analysis of Seabed-Rubble Mound Breakwater System Under Waves
,”
Appl. Ocean Res.
,
78
, pp.
75
87
.
15.
Liao
,
C. C.
,
Lin
,
Z.
,
Guo
,
Y.
, and
Jeng
,
D. S.
,
2015
, “
Coupling Model for Waves Propagating Over a Porous Seabed
,”
Theor. Appl. Mech. Lett.
,
5
(
2
), pp.
85
88
.
16.
Sumer
,
B. M.
,
2014
, “
Advances in Seabed Liquefaction and Its Implications for Marine Structures
,”
Geotech. Eng.
,
45
(
14
).
17.
Choudhury
,
B.
,
Dasari
,
G. R.
, and
Nogami
,
T.
,
2006
, “
Laboratory Study of Liquefaction Due to Wave-Seabed Interaction
,”
J. Geotech. Geoenvironmental Eng.
,
132
(
7
).
18.
Mory
,
M.
,
Michallet
,
H.
,
Bonjean
,
D.
,
Piedra-Cueva
,
I.
,
Barnoud
,
J. M.
,
Foray
,
P.
,
Abadie
,
S.
, and
Breul
,
P.
,
2007
, “
A Field Study of Momentary Liquefaction Caused by Waves Around a Coastal Structure
,”
J. Waterw. Port, Coast. Ocean Eng.
,
133
(
1
), pp.
28
38
.
19.
Jeng
,
D. S.
,
Ye
,
J. H.
,
Zhang
,
J. S.
, and
Liu
,
P. L. F.
,
2013
, “
An Integrated Model for the Wave-Induced Seabed Response Around Marine Structures: Model Verifications and Applications
,”
Coast. Eng.
,
72
, pp.
1
19
.
20.
Ye
,
J.
,
Jeng
,
D.
,
Wang
,
R.
, and
Zhu
,
C.
,
2013
, “
Validation of a 2-D Semi-coupled Numerical Model for Fluid-Structure-Seabed Interaction
,”
J. Fluids Struct.
,
42
, pp.
333
357
.
21.
Elsafti
,
H.
, and
Oumeraci
,
H.
,
2016
, “
A Numerical Hydro-Geotechnical Model for Marine Gravity Structures
,”
Comput. Geotech.
,
79
, pp.
105
129
.
22.
Hsu
,
J. R. C.
, and
Jeng
,
D. S.
,
1994
, “
Wave-Induced Soil Response in an Unsaturated Anisotropic Seabed of Finite Thickness
,”
Int. J. Numer. Anal. Methods Geomech.
,
18
(
11
), pp.
785
807
.
23.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1987
,
Water Wave Mechanics for Engineers and Scientists
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
24.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. Low-Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.
25.
Zienkiewicz
,
O. C.
,
Chang
,
C. T.
, and
Bettess
,
P.
,
1980
, “
Drained, Undrained, Consolidating and Dynamic Behaviour Assumptions in Soils
,”
Geotechnique
,
30
(
4
), pp.
385
395
.
26.
Lin
,
P.
, and
Liu
,
P. L. F.
,
1999
, “
Internal Wave-Maker for Navier–Stokes Equations Models
,”
J. Waterw. Port, Coast. Ocean Eng.
,
125
(
4
), pp.
207
215
.
27.
Lee
,
J. F.
, and
Lan
,
Y. J.
,
2002
, “
On Waves Propagating Over Poro-Elastic Seabed
,”
Ocean Eng.
,
29
(
8
), pp.
931
946
.
28.
Le Mehaute
,
B.
,
1976
, “
An Introduction to Hydrodynamics and Water Waves
”.
29.
Bouckovalas
,
J.
,
1982
,
An Analytical Method for Predicting Permanent Deformation of Foundations Under Cyclic Loads
,
M.I.T.
30.
Horikawa
,
K.
,
1978
,
Coastal Engineering
,
University of Tokyo Press
,
Tokyo
.
31.
Weggel
,
J. R.
,
1972
, “
Maximum Breaker Height
,”
ASCE J. Waterw. Harb. Coast. Eng Div.
,
98
(
4
), pp.
529
548
.
32.
Southgate
,
H. N.
,
1988
,
Wave Breaking–a Review of Techniques for Calculating Energy Losses in Breaking Waves
,
Hydraulics Research Wallington
.
Technical Report
.
33.
Yamamoto
,
T.
,
Koning
,
H. L.
,
Sellmeijer
,
H.
, and
Van Hijum
,
E. V.
,
1978
, “
On the Response of a Poro-Elastic Bed to Water Waves
,”
J. Fluid Mech.
,
87
(
1
), pp.
193
206
.
34.
Rafiei
,
A.
,
Vahdani
,
S.
, and
Badiei
,
P.
,
2014
, “
Forced Vibration of Dam and Reservoir Using SBFEM
,”
Int. J. Tech. Res. Appl.
, (
9
), pp.
9
11
.
35.
Ye
,
J. H.
, and
Jeng
,
D. S.
,
2012
, “
Response of Porous Seabed to Nature Loadings: Waves and Currents
,”
J. Eng. Mech.
,
138
(
6
), pp.
601
613
.
36.
Chowdhury
,
R.
,
Flentje
,
P.
, and
Bhattacharya
,
G.
,
2009
,
Geotechnical Slope Analysis
,
CRC Press
.
37.
Yu
,
H. S.
,
2006
,
Plasticity and Geotechnics
,
Springer
,
New York
.
38.
Griffiths
,
D. V.
, and
Lane
,
P. A.
,
1999
, “
Slope Stability Analysis by Finite Elements
,”
Geotechnique
,
49
(
3
), pp.
387
403
.
39.
Potts
,
D.
, and
Zdravkovic
,
L.
,
1999
,
Finite Element Analysis in Geotechnical Engineering: Volume One—Theory
,
Thomas Telford
.
40.
COMSOL
,
2019
, Multiphysics® v. 5.5, COMSOL AB, Stockholm, Sweden, www.comsol.com.
41.
Rafiei
,
A.
,
Rahman
,
M. S.
, and
Gabr
,
M. A.
,
2019
, “
Coupled Analysis of Wave, Structure, and Sloping Seabed Interaction: Response and Instability of Seabed
,”
Geo-Congress
,
Philadelphia, PA
.
42.
Rafiei
,
A.
,
2019
,
Coupled Analysis of Wave, Structure, and Sloping Seabed Interaction: Response and Instability of Seabed
,
North Carolina State University
.
43.
Bower
,
T.
,
2017
,
Constitutive Modelling of Soils and Fibre-Reinforced Soils
,
Cardiff University
.
44.
Sumer
,
B. M.
,
2014
,
Liquefaction Around Marine Structures
,
World Scientific
,
Singapore
.
45.
Alcérreca-Huerta
,
J. C.
, and
Oumeraci
,
H.
,
2018
, “
Soil Stability Analysis for Wave-Induced Momentary Liquefaction Beneath Porous Bonded Revetments
,”
Coast. Eng.
,
138
, pp.
22
35
.
You do not currently have access to this content.