Abstract

The stability analysis of breakwaters is very important to have a safe and economic design of these coastal protective structures and the damage level is one of the most important parameters in this context. In the recent past, machine learning techniques showed immense potential in transforming many industries and processes, for making them more efficient and accurate. In this study, five advanced machine learning algorithms, support vector regression, random forest, Adaboost, gradient boosting, and deep artificial neural network, were employed and analyzed on estimation of the damage level of rubble-mound breakwaters. A large experimental dataset, considering almost every stability variable with their whole ranges, was used in this purpose. Also, a detailed feature analysis is presented to have an insight into the relations between these variables. It was found that the present study had overcome all of the limitations of existing studies related to this field and delivered the highest level of accuracy.

References

1.
Van der Meer
,
J. W.
,
1988
, “
Rock Slopes and Gravel Beaches Under Wave Attack
,” Ph.D. Thesis, Delft University of Technology, Delft, Netherlands.
2.
Van der Meer
,
J. W.
,
1987
, “
Stability of Breakwater Armour Layers—Design Formulae
,”
Coastal Eng.
,
11
(
3
), pp.
219
239
.
3.
Yagci
,
O.
,
Akyüz
,
D.
,
Cigizoglu
,
H.
, and
Kabdaşlı
,
M.
,
2005
, “
Artificial Intelligence Methods in Breakwater Damage Ratio Estimation
,”
Ocean Eng.
,
32
(
7
), pp.
2088
2106
.
4.
Mandal
,
S.
,
Rao
,
S.
,
Harish
,
N.
, and
Lokesha
,
2012
, “
Damage Level Prediction of Non-reshaped Berm Breakwater Using ANN, SVM and ANFIS Models
,”
Int. J. Naval Architect. Ocean Eng.
,
4
(
6
), pp.
112
122
.
5.
Hanzawa
,
M.
,
Sato
,
H.
,
Takahashi
,
S.
,
Takayama
,
T.
, and
Tanimoto
,
K.
,
1997
, “
New Stability Formula for Wave-Dissipating Concrete Blocks Covering Horizontally Composite Breakwaters
,”
Coastal Eng. Proceedings
,
1
, p.
25
.
6.
Kuntoji
,
G.
,
Rao
,
S.
,
Manu
,
M.
, and
Reddy
,
E.
,
2019
, “Prediction of Damage Level of Inner Conventional Rubble Mound Breakwater of Tandem Breakwater Using Swarm Intelligence-Based Neural Network (PSO-ANN) Approach,”
Soft Computing for Problem Solving
,
Springer
,
Singapore
, pp.
441
453
.
7.
Gent
,
M.
,
Almeida
,
E.
, and
Hofland
,
B.
,
2019
, “
Statistical Analysis of the Stability of Rock Slopes
,”
J. Mar. Sci. Eng.
,
7
(
3
), p.
60
.
8.
Vidal
,
C.
,
Medina
,
R.
, and
Lomonaco
,
P.
,
2006
, “
Wave Height Parameter for Damage Description of Rubble Mound Breakwater
,”
Coastal Eng.
,
53
(
7
), pp.
711
722
.
9.
Medina
,
J.
,
Hudspeth
,
R.
,
Melby
,
J.
, and
Kobayashi
,
N.
,
2000
, “
Progression and Variability of Damage on Rubble Mound Breakwaters
,”
J. Waterw. Port Coast OC-ASCE
,
126
(
5
), p.
268
.
10.
Rao
,
S.
,
Pramod
,
C.
, and
Rao
,
B.
,
2004
, “
Stability of Berm Breakwater With Reduced Armor Stone Weight
,”
Ocean Eng.
,
31
(
8
), pp.
1577
1589
.
11.
Hudson
,
R. Y.
,
1959
, “
Laboratory Investigations of Rubble-Mound Breakwaters
,”
ASCE Transactions. J, Waterw, Harb. Div.
,
85
(
3
).
12.
Thompson
,
D. M.
, and
Shuttler
,
R. M.
,
1975
, “
Riprap Design for Wind-Wave Attack, A Laboratory Study in Random Waves
,”
Hydraulic Engineering Reports, HR Wallingford
. http://resolver.tudelft.nl/uuid:b52f6d17-554c-4d43-adba-8a4903501480
13.
Ramos
,
A. I. W.
,
Fernandes
,
A.
, and
Thomaz
,
V. M.
,
2022
, “
Active Absorption of Random Waves in Wave Flume Using Artificial Neural Networks
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
4
), p.
041201
.
14.
Bhaumik
,
B.
,
Changdar
,
S.
, and
De
,
S.
,
2022
, “
An Expert Model Based on Physics-Aware Neural Network for the Prediction of Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer Trans. ASME
,
144
(
10
), p.
103502
.
15.
Liu
,
S.
, and
Zhang
,
X.
,
2022
, “
A Wave Prediction Framework Based on Machine Learning and the Third Generation Wave Model
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
1
), p.
011202
.
16.
Silva
,
V.
,
Sagrilo
,
L.
, and
Serrano de Araujo
,
B.
,
2021
, “
Applied Deep Learning for Slender Marine Structure Dynamic Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
,
144
(
8
), p.
021701
.
17.
Ma
,
Y.
, and
Sclavounos
,
P.
,
2021
, “
Support Vector Machines Model of the Nonlinear Hydrodynamics of Fixed Cylinders
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
1
), pp.
051701
.
18.
Changdar
,
S.
,
Saha
,
S.
, and
De
,
S.
,
2020
, “
A Smart Model for Prediction of Viscosity of Nanofluids Using Deep Learning
,”
Smart Sci.
,
8
(
11
), pp.
242
256
.
19.
Lee
,
A.
,
Kim
,
S. E.
, and
Suh
,
K.-D.
,
2015
, “
Estimation of Stability Number of Rock Armor Using Artificial Neural Network Combined With Principal Component Analysis
,”
Procedia Eng.
,
116
(
12
), pp.
149
154
.
20.
Patil
,
S. G.
,
Mandal
,
S.
, and
Hegde
,
A.
,
2012
, “
Genetic Algorithm Based Support Vector Machine Regression in Predicting Wave Transmission of Horizontally Interlaced Multi-layer Moored Floating Pipe Breakwater
,”
Adv. Eng. Soft.
,
45
(
3
), pp.
203
212
.
21.
Zanuttigh
,
B.
,
Formentin
,
S.
, and
van der Meer
,
J.
,
2016
, “
Prediction of Extreme and Tolerable Wave Overtopping Discharges Through an Advanced Neural Network
,”
Ocean Eng.
,
127
(
11
), pp.
7
22
.
22.
Stefanakos
,
C.
, and
Vanem
,
E.
,
2018
, “
Nonstationary Fuzzy Forecasting of Wind and Wave Climate in Very Long-Term Scales
,”
J. Ocean Eng. Sci.
,
3
(
2
), pp.
144
155
.
23.
Kundapura
,
S.
, and
Hegde
,
A.
,
2017
, “
Current Approaches of Artificial Intelligence in Breakwaters—A Review
,”
Ocean Syst. Eng.
,
7
(
6
), pp.
75
87
.
24.
Deo
,
M. C.
, and
Naidu
,
C. S.
,
1998
, “
Real Time Wave Forecasting Using Neural Networks
,”
Ocean Eng.
,
26
(
3
), pp.
191
203
.
25.
Kim
,
D.
,
Kim
,
D.
,
Chang
,
S.
,
Lee
,
J. J.
, and
Lee
,
D. H.
,
2011
, “
Stability Number Prediction for Breakwater Armor Blocks Using Support Vector Regression
,”
KSCE J. Civil Eng.
,
15
(
2
), pp.
225
230
.
26.
Etemad-Shahidi
,
A.
,
Bali
,
M.
, and
Gent
,
M.
,
2020
, “
On the Stability of Rock Armored Rubble Mound Structures
,”
Coastal Eng.
,
158
(
6
), p.
103655
.
27.
Mase
,
H.
,
Sakamoto
,
M.
, and
Sakai
,
T.
,
1995
, “
Neural Network for Stability Analysis of Rubble-Mound Breakwaters
,”
J. Waterw. Port Coast OC-ASCE
,
121
(
6
), p.
11
.
28.
Kim
,
D.
, and
Park
,
W.-S.
,
2005
, “
Neural Network for Design and Reliability Analysis of Rubble Mound Breakwaters
,”
Ocean Eng.
,
32
(
8
), pp.
1332
1349
.
29.
Tur
,
R.
,
Balas
,
C.
, and
Koç
,
M.
,
2010
, “
Artificial Neural Networks Based on Principal Component Analysis, Fuzzy Systems and Fuzzy Neural Networks for Preliminary Design of Rubble Mound Breakwaters
,”
Appl. Ocean Res.
,
32
(
10
), pp.
425
433
.
30.
Janardhan
,
P.
,
Narayana
,
H.
,
Rao
,
S.
, and
Shirlal
,
K.
,
2015
, “
Performance of Variable Selection Method for the Damage Level Prediction of Reshaped Berm Breakwater
,”
Aquatic Procedia
,
4
, pp.
302
307
.
31.
Kim
,
D.
,
Kim
,
D.
, and
Chang
,
S.
,
2008
, “
Application of Probabilistic Neural Network to Design Breakwater Armor Blocks
,”
Ocean Eng.
,
35
(
3
), pp.
294
300
.
32.
Iglesias
,
G.
,
Rabuñal
,
J.
,
Losada
,
M.
,
Pachón
,
H.
,
Castro
,
A.
, and
Carballo
,
R.
,
2008
, “
A Virtual Laboratory for Stability Tests of Rubble-Mound Breakwaters
,”
Ocean Eng.
,
35
(
8
), pp.
1113
1120
.
33.
Erdik
,
T.
,
2009
, “
Fuzzy Logic Approach to Conventional Rubble Mound Structures Design
,”
Expert Syst. Appl.
,
36
(
4
), pp.
4162
4170
.
34.
Koç
,
M.
, and
Balas
,
C.
,
2012
, “
Genetic Algorithms Based Logic-Driven Fuzzy Neural Networks for Stability Assessment of Rubble-Mound Breakwaters
,”
Appl. Ocean Res.
,
37
(
8
), pp.
211
219
.
35.
Kim
,
D.
,
Kim
,
Y.
, and
Hur
,
D.-S.
,
2014
, “
Artificial Neural Network Based Breakwater Damage Estimation Considering Tidal Level Variation
,”
Ocean Eng.
,
87
(
9
), pp.
185
190
.
36.
Etemad-Shahidi
,
A.
, and
Bonakdar
,
L.
,
2009
, “
Design of Rubble-Mound Breakwaters Using M5 Machine Learning Method
,”
Appl. Ocean Res.
,
31
(
7
), pp.
197
201
.
37.
Etemad-Shahidi
,
A.
, and
Bali
,
M.
,
2012
, “
Stability of Rubble-Mound Breakwater Using H50 Wave Height Parameter
,”
Coastal Eng.
,
59
(
1
), pp.
38
45
.
38.
Saha
,
S.
,
Changdar
,
S.
, and
De
,
S.
,
2022
, “
Prediction of the Stability Number of Conventional Rubble-Mound Breakwaters Using Machine Learning Algorithms
,”
J. Ocean Eng. Sci.
39.
Dwarakish
,
G.
, and
Nithyapriya
,
B.
,
2016
, “
Application of Soft Computing Techniques in Coastal Study—A Review
,”
J. Ocean Eng. Sci.
,
1
(
4
), pp.
247
255
.
40.
Cutler
,
D.
,
Edwards
,
T.
,
Beard
,
K.
,
Cutler
,
A.
,
Hess
,
K.
,
Gibson
,
J.
, and
Lawler
,
J.
,
2007
, “
Random Forests for Classification in Ecology
,”
Ecology
,
88
(
12
), pp.
2783
2792
.
41.
Shahhosseini
,
M.
,
Hu
,
G.
, and
Archontoulis
,
S.
,
2020
, “
Forecasting Corn Yield With Machine Learning Ensembles
,”
Front. Plant Sci.
,
11
(
7
), p.
1120
.
42.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
, pp.
5
32
.
43.
Louppe
,
G.
,
2014
, “
Understanding Random Forests: From Theory to Practice
,” PhD Thesis, University of Liege, Belgium.
44.
Chengsheng
,
T.
,
Huacheng
,
L.
, and
Bing
,
X.
,
2017
, “
Adaboost Typical Algorithm and Its Application Research
,”
MATEC Web Conf.
,
139
(
1
), p.
00222
.
45.
Ding
,
Y.
,
Zhu
,
H.
,
Chen
,
R.
, and
Li
,
R.
,
2022
, “
An Efficient Adaboost Algorithm With the Multiple Thresholds Classification
,”
Appl. Sci.
,
12
(
12
), p.
5872
.
46.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2000
, “
Additive Logistic Regression: A Statistical View of Boosting
,”
Ann. Stat.
,
28
(
4
), pp.
337
407
.
47.
den Bieman
,
J.
,
Wilms
,
J.
,
Boogaard
,
H.
, and
Gent
,
M.
,
2020
, “
Prediction of Mean Wave Overtopping Discharge Using Gradient Boosting Decision Trees
,”
Water
,
12
(
6
), p.
1703
.
48.
Otchere
,
D.
,
Ganat
,
T.
,
Ojero
,
J.
,
Tackie-Otoo
,
B. N.
, and
Taki
,
M.
,
2022
, “
Application of Gradient Boosting Regression Model for the Evaluation of Feature Selection Techniques in Improving Reservoir Characterisation Predictions
,”
J. Petrol. Sci. Eng.
,
208
(
E
), p.
109244
.
49.
Svozil
,
D.
,
Kvasnicka
,
V.
, and
Pospíchal
,
J.
,
1997
, “
Introduction to Multi-Layer Feed-Forward Neural Networks
,”
Chemom. Intell. Lab. Syst.
,
39
(
11
), pp.
43
62
.
50.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
5
), pp.
436
444
.
51.
Sarker
,
I.
,
2021
, “
Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions
,”
SN Comput. Sci.
,
2
, p.
420
.
52.
Kingma
,
D.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference for Learning Representations
,
San Diego, CA
, p.
12
.
You do not currently have access to this content.