Abstract

Composite materials are increasingly favored propellers, hydrofoils, waterjets, and other marine vessel components for their high stiffness-to-weight ratios and anisotropic properties. The fiber orientation of laminates significantly influences the stiffness of the blade. This study investigates the hydrodynamic loading and structural behavior of laminated composite marine cycloidal propeller (MCP) blades during zig-zag (ZZ) and turning-circle (TC) maneuvers. Composite materials such as carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GFRP), with uni-directional (UD), bidirectional (BD), and cross-ply (CP) fiber orientations, are considered. A matlab code is developed for the 3D boundary element method (BEM) to compute hydrodynamic loads acting on and the nonlinear finite element method (FEM) to calculate the structural responses of the MCP blade. UD and BD fiber orientations are optimized for the MCP blade by performing static analysis in air through minimizing deformation, twist, and the Tsai–Hill failure index. Hydroelastic responses such as deformation, velocity, twist angle, and stress of the MCP blade are analyzed during ZZ and TC maneuvers. The results show that the UD exhibits higher bending stiffness and the BD exhibits higher torsional stiffness. The CFRP blades show better structural performance compared to GFRP. However, both materials show sufficient structural integrity with a failure index (FI) of less than one during ZZ and TC maneuvers. This study highlights the potential of composite material as a viable alternative to the metallic blade in ship propulsion systems.

References

1.
Young
,
Y. L.
,
Motley
,
M. R.
,
Barber
,
R.
,
Chae
,
E. J.
, and
Garg
,
N.
,
2016
, “
Adaptive Composite Marine Propulsors and Turbines: Progress and Challenges
,”
ASME Appl. Mech. Rev.
,
68
(
6
), p.
060803
.
2.
Rubino
,
F.
,
Nisticò
,
A.
,
Tucci
,
F.
, and
Carlone
,
P.
,
2020
, “
Marine Application of Fiber Reinforced Composites: A Review
,”
J. Mar. Sci. Eng.
,
8
(
1
), p.
26
.
3.
Ke
,
S.
,
Wen-Quan
,
W.
, and
Yan
,
Y.
,
2020
, “
Experimental and Numerical Analysis of a Multilayer Composite Ocean Current Turbine Blade
,”
Ocean Eng.
,
198
, p.
106977
.
4.
Ma’ruf
,
B.
,
Ismail
,
A.
,
Purnama Sari
,
D.
, and
Sujiatanti
,
S. H.
,
2023
, “
Strength Analysis of Marine Biaxial Warp-Knitted Glass Fabrics as Composite Laminations for Ship Material
,”
Curved Layered Struct.
,
10
(
1
), p.
20220209
.
5.
Pernod
,
L.
,
Ducoin
,
A.
,
Le Sourne
,
H.
, and
Sigrist
,
J. F.
,
2017
, “
Coupled Numerical Simulation of an Aluminum and a Composite Hydrofoil in Steady and Unsteady Flows
,”
Fifth International Symposium on Marine Propulsors
,
Finland
, pp.
12
15
.
6.
Pernod
,
L.
,
Ducoin
,
A.
,
Le Sourne
,
H.
,
Astolfi
,
J. A.
, and
Casari
,
P.
,
2019
, “
Experimental and Numerical Investigation of the Fluid-Structure Interaction on a Flexible Composite Hydrofoil Under Viscous Flows
,”
Ocean Eng.
,
194
, p.
106647
.
7.
Kapuria
,
S.
, and
Das
,
H. N.
,
2018
, “
Improving Hydrodynamic Efficiency of Composite Marine Propellers in Off-Design Conditions Using Shape Memory Alloy Composite Actuators
,”
Ocean Eng.
,
168
, pp.
185
203
.
8.
Young
,
Y. L.
, and
Motley
,
M.
,
2009
, “
Rate-Dependent Hydroelastic Response of Self-Adaptive Composite Propellers in Fully Wetted and Cavitating
,”
Proceedings of the 7th International Symposium on Cavitation CAV-2009
,
Ann Arbor, MI
,
Aug. 17–22
, pp.
60
70
.
9.
Zhang
,
H.
,
Wu
,
Q.
,
Liu
,
Y.
,
Huang
,
B.
, and
Wang
,
G.
,
2021
, “
Free Vibration Analysis of Composite Foils With Different Ply Angles Based on Beam Theory
,”
Ocean Eng.
,
226
, p.
108854
.
10.
Liao
,
Y.
,
Garg
,
N.
,
Martins
,
J. R.
, and
Young
,
Y. L.
,
2019
, “
Viscous Fluid–Structure Interaction Response of Composite Hydrofoils
,”
Compos. Struct.
,
212
, pp.
571
585
.
11.
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2019
, “
Steady and Dynamic Hydroelastic Behavior of Composite Lifting Surfaces
,”
Compos. Struct.
,
227
, p.
111240
.
12.
Ng
,
G. W.
,
Vishneek
,
A. S.
,
Martins
,
J. R. R. A.
, and
Young
,
Y. L.
,
2022
, “
Scaling the Dynamic Response and Stability of Composite Hydrodynamic Lifting Surfaces
,”
Compos. Struct.
,
285
, p.
115148
.
13.
Liao
,
Y.
,
Martins
,
J. R. R. A.
, and
Young
,
Y. L.
,
2021
, “
3-D High-Fidelity Hydrostructural Optimization of Cavitation-Free Composite Lifting Surfaces
,”
Compos. Struct.
,
268
, p.
113937
.
14.
Ng
,
G. W.
,
Martins
,
J. R. R. A.
, and
Young
,
Y. L.
,
2022
, “
Optimizing Steady and Dynamic Hydroelastic Performance of Composite Foils With Low-Order Models
,”
Compos. Struct.
,
301
, p.
116101
.
15.
Ducoin
,
A.
, and
Young
,
Y. L.
,
2013
, “
Hydroelastic Response and Stability of a Hydrofoil in Viscous Flow
,”
J. Fluids Struct.
,
38
, pp.
40
57
.
16.
Zhang
,
H.
,
Wu
,
Q.
,
Li
,
Y.
,
Huang
,
B.
, and
Wang
,
G.
,
2018
, “
Numerical Investigation of the Deformation Characteristics of a Composite Hydrofoil With Different Ply Angles
,”
Ocean Eng.
,
163
, pp.
348
357
.
17.
Young
,
Y. L.
,
Garg
,
N.
,
Brandner
,
P. A.
,
Pearce
,
B. W.
,
Butler
,
D.
,
Clarke
,
D.
, and
Phillips
,
A. W.
,
2018
, “
Load-Dependent Bend-Twist Coupling Effects on the Steady-State Hydroelastic Response of Composite Hydrofoils
,”
Compos. Struct.
,
189
, pp.
398
418
.
18.
Huang
,
Z.
,
Xiong
,
Y.
, and
Xu
,
Y.
,
2019
, “
The Simulation of Deformation and Vibration Characteristics of a Flexible Hydrofoil Based on Static and Transient FSI
,”
Ocean Eng.
,
182
, pp.
61
74
.
19.
Hussain
,
M.
,
Abdel-Nasser
,
Y.
,
Banawan
,
A.
, and
Ahmed
,
Y. M.
,
2021
, “
Effect of Hydrodynamic Twisting Moment on Design and Selection of Flexible Composite Marine Propellers
,”
Ocean Eng.
,
220
, p.
108399
.
20.
Zhang
,
X.
,
Hong
,
Y.
,
Liu
,
W.
,
Yang
,
F.
, and
Wang
,
R.
,
2020
, “
Improving the Propulsion Performance of Composite Propellers Under Off-Design Conditions
,”
Appl. Ocean Res.
,
100
, p.
102164
.
21.
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2020
, “
Material Anisotropy and Sweep Effects on the Hydroelastic Response of Lifting Surfaces
,”
Compos. Struct.
,
242
, p.
112140
.
22.
Liao
,
Y.
,
Martins
,
J. R. R. A.
, and
Young
,
Y. L.
,
2019
, “
Sweep and Anisotropy Effects on the Viscous Hydroelastic Response of Composite Hydrofoils
,”
Compos. Struct.
,
230
, p.
111471
.
23.
Hong
,
Y.
,
Wilson
,
P. A.
,
He
,
X. D.
, and
Wang
,
R. G.
,
2017
, “
Numerical Analysis and Performance Comparison of the Same Series of Composite Propellers
,”
Ocean Eng.
,
144
, pp.
211
223
.
24.
Zhang
,
X.
,
Hong
,
Y.
,
Yang
,
F.
,
Jiao
,
W.
, and
Wang
,
R.
,
2019
, “
Effect of Rudder on Propulsion Performance and Structural Deformation of Composite Propellers
,”
Ocean Eng.
,
182
, pp.
318
328
.
25.
Huang
,
Z.
,
Chen
,
Z.
,
Zhang
,
Y.
,
Xiong
,
Y.
, and
Duan
,
K.
,
2022
, “
The Scale Effect Study on the Transient Fluid–Structure Coupling Performance of Composite Propellers
,”
J. Mar. Sci. Eng.
,
10
(
11
), p.
1725
.
26.
Herath
,
M. T.
,
Prusty
,
B. G.
,
Phillips
,
A. W.
, and
John
,
N. S.
,
2017
, “
Structural Strength and Laminate Optimization of Self-Twisting Composite Hydrofoils Using a Genetic Algorithm
,”
Compos. Struct.
,
176
, pp.
359
378
.
27.
Zhang
,
X.
,
Hong
,
Y.
,
Yang
,
F.
,
Xu
,
Z.
,
Zhang
,
J.
,
Liu
,
W.
, and
Wang
,
R.
,
2019
, “
Propulsive Efficiency and Structural Response of a Sandwich Composite Propeller
,”
Appl. Ocean Res.
,
84
, pp.
250
258
.
28.
Zou
,
D.
,
Zhang
,
J.
,
Ta
,
N.
, and
Rao
,
Z.
,
2017
, “
The Hydroelastic Analysis of Marine Propellers with Consideration of the Effect of the Shaft
,”
Ocean Eng.
,
131
, pp.
95
106
.
29.
Maung
,
P. T.
,
Prusty
,
B. G.
,
Phillips
,
A. W.
, and
St John
,
N. A.
,
2021
, “
Curved Fibre Path Optimisation for Improved Shape Adaptive Composite Propeller Blade Design
,”
Compos. Struct.
,
255
, p.
112961
.
30.
Han
,
S.
,
Wang
,
P.
,
Jin
,
Z.
,
An
,
X.
, and
Xia
,
H.
,
2022
, “
Structural Design of the Composite Blades for a Marine Ducted Propeller Based on a Two-Way Fluid-Structure Interaction Method
,”
Ocean Eng.
,
259
, p.
111872
.
31.
An
,
X.
,
Wang
,
P.
,
Song
,
B.
, and
Lessard
,
L.
,
2020
, “
Bi-Directional Fluid-Structure Interaction for Prediction of Tip Clearance Influence on a Composite Ducted Propeller
,”
Ocean Eng.
,
208
, p.
107390
.
32.
Dash
,
A. K.
,
Prabhu
,
J.
, and
Nagarajan
,
V.
,
2022
, “
Stochastic Finite Element Analysis of Composite Cycloidal Propeller Blade During Crash-Stop Ship Maneuver
,”
Compos. Struct.
,
286
, p.
115306
.
33.
Prabhu
,
J. J.
,
Dash
,
A. K.
,
Nagarajan
,
V.
, and
Sunny
,
M. R.
,
2023
, “
Vibration Analysis of Cycloidal Propeller Blade During Ship Maneuvering
,”
J. Mar. Sci. Technol.
,
28
(
1
), pp.
44
71
.
34.
Maljaars
,
P. J.
,
Kaminski
,
M. L.
, and
Den Besten
,
J. H.
,
2017
, “
Finite Element Modelling and Model Updating of Small Scale Composite Propellers
,”
Compos. Struct.
,
176
, pp.
154
163
.
35.
Faye
,
A.
,
Perali
,
P.
,
Augier
,
B.
,
Sacher
,
M.
,
Leroux
,
J. B.
,
Nême
,
A.
, and
Astolfi
,
J. A.
,
2024
, “
Fluid-Structure Interactions Response of a Composite Hydrofoil Modelled With 1D Beam Finite Elements
,”
J. Sail. Tech.
,
9
(
01
), pp.
19
41
.
36.
Monterrubio
,
L. E.
, and
Krysl
,
P.
,
2019
, “
Natural Frequencies of Submerged Structures Using an Efficient Calculation of the Added Mass Matrix in the Boundary Element Method
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021008
.
37.
Maljaars
,
P. J.
,
Grasso
,
N.
,
Den Besten
,
J. H.
, and
Kaminski
,
M. L.
,
2020
, “
BEM–FEM Coupling for the Analysis of Flexible Propellers in Non-Uniform Flows and Validation With Full-Scale Measurements
,”
J. Fluids Struct.
,
95
, p.
102946
.
38.
Li
,
J.
,
Qu
,
Y.
, and
Hua
,
H.
,
2017
, “
Hydroelastic Analysis of Underwater Rotating Elastic Marine Propellers by Using a Coupled BEM-FEM Algorithm
,”
Ocean Eng.
,
146
, pp.
178
191
.
39.
Hussain
,
M.
,
Abdel-Nasser
,
Y.
,
Banawan
,
A.
, and
Ahmed
,
Y. M.
,
2021
, “
Failure Analysis of Tapered Composite Propeller Blade
,”
Ocean Eng.
,
236
, p.
109506
.
40.
Jürgens
,
D.
,
Palm
,
M.
,
Singer
,
S.
, and
Urban
,
K.
,
2007
, “
Numerical Optimization of the Voith–Schneider Propeller
,”
ZAMM J. Appl. Math. Mech.
,
87
(
10
), .
698
710
.
41.
Dash
,
A. K.
,
Nagarajan
,
V.
, and
Sha
,
O. P.
,
2015
, “
Uncertainty Assessment for Ship Maneuvering Mathematical Model
,”
Int. Shipbuild. Prog.
,
62
(
1–2
), pp.
57
111
.
42.
Katz
,
J.
,
2001
,
Low-Speed Aerodynamics
,
Cambridge University Press
,
Cambridge, UK
.
43.
Prabhu
,
J. J.
,
Dash
,
A. K.
,
Nagarajan
,
V.
, and
Sha
,
O. P.
,
2019
, “
On the Hydrodynamic Loading of Marine Cycloidal Propeller During Maneuvering
,”
Appl. Ocean Res.
,
86
, pp.
87
110
.
44.
Prabhu
,
J. J.
,
Nagarajan
,
V.
,
Sunny
,
M. R.
, and
Sha
,
O. P.
,
2017
, “
On the Fluid Structure Interaction of a Marine Cycloidal Propeller
,”
Appl. Ocean Res.
,
64
, pp.
105
127
.
45.
Pica
,
A.
,
Wood
,
R. D.
, and
Hinton
,
E.
,
1980
, “
Finite Element Analysis of Geometrically Nonlinear Plate Behaviour Using a Mindlin Formulation
,”
Comput. Struct.
,
11
(
3
), pp.
203
215
.
You do not currently have access to this content.