Creep rupture strength of creep strength enhanced ferritic steels is often overestimated, and its evaluated value has been reduced repeatedly. In this paper, the cause of the overestimation is discussed, and the creep rupture strength of T91 steel is assessed with its updated creep rupture data. Effects of residual Ni concentration on the creep rupture strength and necessity of F factor in T91 steel are also discussed. Decrease in activation energy Q for rupture life in long-term creep is the cause of the overestimation, since conventional time–temperature parameter (TTP) methods cannot deal with the change in Q. Due to the decrease in Q, long-term creep rupture strength evaluated decreases as longer-term data points are added or shorter-term data points are discarded in the conventional TTP analysis. The long-term region with small values of activation energy and stress exponent is named region L2 in this paper. Region L2 appears in all the heats of T91 steel and plate products of Gr.91 steel. Since service conditions of the T91 steel are usually in region L2, the creep rupture strength under the service conditions should be evaluated from the rupture data in region L2 only. The 5 × 105 hrs rupture strength at 550 °C decreases from 129 MPa (evaluated from the whole data of T91 steel) to 79 MPa (evaluated from the data in region L2 only) with increasing cut-off time for data selection. The 105 hrs rupture strength at 600 °C also decreases from 87 MPa (whole data) to 70 MPa (region L2 only) despite sufficient number of long-term data points at 600 °C. Careful consideration on the data selection is necessary in evaluation of creep rupture strength of the T91 steel. A multiregion rupture data analysis (MRA) is helpful to select data points belonging to region L2.

References

1.
Kimura
,
K.
,
Kushima
,
H.
, and
Abe
,
F.
,
2000
, “
Heterogeneous Changes in Microstructure and Degradation Behavior of 9Cr-1Mo-V-Nb Steel During Long Term Creep
,”
Key Eng. Mater.
,
171–174
, pp.
483
490
.
2.
Maruyama
,
K.
,
Sawada
,
K.
, and
Koike
,
J.
,
2001
, “
Strengthening Mechanism of Creep Resistant Tempered Martensitic Steel
,”
ISIJ Int.
,
41
(
6
), pp.
641
653
.
3.
Danielsen
,
H. K.
, and
Hald
,
J.
,
2006
, “
Behaviour of Z Phase in 9-12%Cr Steels
,”
Energy Mater.
,
1
(
1
), pp.
49
57
.
4.
Maruyama
,
K.
,
2008
, “
Fracture Mechanism Map and Fundamental Aspects of Creep Fracture
,”
Creep-Resistant Steels
,
F.
Abe
,
T.
Kern
, and
R.
Viswanathan
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
350
364
.
5.
Masuyama
,
F.
,
2010
, “
Advanced Technology in Creep Life Prediction and Damage Evaluation for Creep Strength Enhanced Ferritic Steels
,”
High-Temperature Defect Assessment (HIDA-5), European Technology Development
,
Surry, UK
, June 23–25.
6.
Kimura
,
K.
, and
Takahashi
,
Y.
,
2012
, “
Evaluation of Long-Term Creep Strength of ASME Grade 91, 92, and 122 Type Steels
,”
ASME
Paper No. PVP2012-78323.
7.
Bendick
,
W.
,
Cipolla
,
L.
,
Gabrel
,
J.
, and
Hald
,
J.
,
2009
, “
New ECCC Assessment of Creep Rupture Strength for Steel Grade X10CrMoVNb9-1 (Grade 91)
,”
Creep and Fracture in High Temperature Components
,
I. A.
Shibli
, and
S. R.
Holdsworth
, eds.,
DEStech Publications
,
Lancaster, PA
, pp.
56
67
.
8.
Maruyama
,
K.
, and
Yoshimi
,
K.
,
2007
, “
Influence of Data Analysis Method and Allowable Stress Criterion on Allowable Stress of Gr.122 Heat Resistant Steel
,”
ASME J. Pressure Vessel Technol.
,
129
(
3
), pp.
449
453
.
9.
Maruyama
,
K.
,
Nakamura
,
J.
, and
Yoshimi
,
K.
,
2015
, “
Prediction of Long-Term Creep Rupture Life of Grade 122 Steel by Multiregion Analysis
,”
ASME J. Pressure Vessel Technol.
,
137
(
2
), p.
021403
.
10.
National Institute for Materials Science
,
2014
, “
Data Sheets of the Elevated-Temperature Properties of 9Cr-1Mo-V-Nb Steel Tubes for Boilers and Heat Exchangers, 9Cr-1Mo-V-Nb Steel Plates for Boilers and Pressure Vessels and 9Cr-1Mo-V-Nb Seamless Pipe for High Temperature Service
,”
NIMS Creep Data Sheet No. 43A
,
NIMS
,
Tsukuba, Japan
.
11.
Orlova
,
A.
,
Bursik
,
J.
,
Kucharova
,
K.
, and
Sklenicka
,
V.
,
1998
, “
Microstructural Development During High Temperature Creep of 9% Cr Steel
,”
Mater. Sci. Eng. A
,
245
(
1
), pp.
39
48
.
12.
Haney
,
E. M.
,
Dalle
,
F.
,
Sauzay
,
M.
,
Vincent
,
L.
,
Tournie
,
I.
,
Allais
,
L.
, and
Fournier
,
B.
,
2009
, “
Macroscopic Results of Long-Term Creep on a Modified 9Cr-1Mo Steel (T91)
,”
Mater. Sci. Eng. A
,
510–511
, pp.
99
103
.
13.
Nagae
,
Y.
,
Onizawa
,
T.
,
Takaya
,
S.
, and
Yamashita
,
Y.
,
2014
, “
Material Strength Evaluation for 60 Years Design in Japanese Sodium Fast Reactor
,”
ASME
Paper No. PVP2014-28689.
14.
Masuyama
,
F.
,
2007
, “
Creep Rupture Life and Design Factors for High-Strength Ferritic Steels
,”
Int. J. Pressure Vessels Piping
,
84
(1–2), pp.
53
61
.
15.
EPRI
,
2014
, “
The Benefits of Improved Control of Composition of Creep-Strength-Enhanced Ferritic Steel Grade 91
,” Electric Power Research Institute, Palo Alto, CA, Report No. 3002003472.
16.
Kimura
,
K.
,
Sawada
,
K.
, and
Kushima
,
H.
,
2010
, “
Long-Term Creep Strength Property of Advanced Ferritic Creep Resistant Steels
,”
Sixth International Conference on Advances in Materials Technology
,
ASM International
,
Materials Park, OH
, pp.
732
752
.
17.
Viswanathan
,
R.
,
1989
, “
Creep
,”
Damage Mechanisms and Life Assessment of High Temperature Components
,
ASM International
,
Metals Park, OH
, pp.
59
110
.
18.
Kimura
,
K.
,
Sawada
,
K.
,
Kubo
,
K.
, and
Kushima
,
H.
,
2004
, “
Influence of Stress on Degradation and Life Prediction on High Strength Ferritic Steels
,”
ASME
/JSME Paper No. PVP2004-2566.
19.
Maruyama
,
K.
,
Baba
,
E.
,
Yokokawa
,
K.
,
Kushima
,
H.
, and
Yagi
,
K.
,
1994
, “
Errors of Creep Rupture Life Extrapolated by Time-Temperature Parameter Methods
,”
Tetsu-to-Hagane
,
80
(4), pp.
336
341
.
20.
Maruyama
,
K.
,
Armaki
,
H. G.
, and
Yoshimi
,
K.
,
2007
, “
Multi-Region Analysis of Creep Rupture Data of 316 Stainless Steel
,”
Int. J. Pressure Vessels Piping
,
84
(
3
), pp.
171
176
.
21.
Oikawa
,
H.
, and
Iijima
,
Y.
,
2008
, “
Diffusion Behavior of Creep-Resistant Steels
,”
Creep-Resistant Steels
,
F.
Abe
,
T.
Kern
, and
R.
Viswanathan
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
241
264
.
22.
Maruyama
,
K.
,
Armaki
,
H. G.
,
Chen
,
R. P.
,
Yoshimi
,
K.
,
Yoshizawa
,
M.
, and
Igarashi
,
M.
,
2010
, “
Cr Concentration Dependence of Overestimation of Long Term Creep Life in Strength Enhanced High Cr Ferritic Steels
,”
Int. J. Pressure Vessels Piping
,
87
(
6
), pp.
276
281
.
23.
Ghassemi-Armaki
,
H.
,
Chen
,
R. P.
,
Maruyama
,
K.
, and
Igarashi
,
M.
,
2013
, “
Contribution of Recovery Mechanisms of Microstructure During Long-Term Creep of Gr.91 Steels
,”
J. Nucl. Mater.
,
433
(1–3), pp.
23
29
.
24.
Maruyama
,
K.
,
Nakamura
,
J.
, and
Yoshimi
,
K.
,
2014
, “
Evaluation of Long-Term Creep Rupture Life of Strength Enhanced High Cr Ferritic Steel on the Basis of Its Temperature Dependence
,”
Advances in Materials Technology for Fossil Power Plants
,
D.
Gandy
, and
J.
Shingledecker
, eds.,
ASM International
,
Materials Park, OH
, pp.
732
743
.
25.
Masuyama
,
F.
,
2015
, “
Code Specification Issues and Life Prediction of Advanced Ferritic Steels for Power Generation
,”
First International Conference on Advanced High-Temperature Materials Technology for Sustainable and Reliable Power Engineering
,
Sapporo, Japan
, June 29–July 3.
26.
Strang
,
A.
, and
Vodarak
,
V.
,
1998
, “
Microstructural Degradation of Martensitic 12Cr Power Plant Steels During Prolonged High Temperature Creep Exposure
,”
Materials for Advanced Power Engineering
1998
,
J.
Lecomte-Beckers
,
F.
Shubert
, and
P. J.
Ennis
, eds.,
Forschungszentrum Julich GmbH
,
Julich, Germany
, pp.
603
614
.
You do not currently have access to this content.