Abstract

The finite element method using the damage model has been increasingly used to predict the failure of various structures. Thus, various damage models were presented, and recently, a phenomenological model called the local fracture strain model was presented, making it easy and accurate to predict the damage of the structure. This model has the advantage of defining fracture strain as a function of stress triaxiality with only a few notched tensile tests but has a limitation because it does not consider the damage evolution because of the void growth. This study presents an enhanced damage model that improves the accuracy of the failure simulation of defected structures by adding a parameter that considers stiffness degradation according to void growth to the damage model based on the fracture strain. Therefore, loading–unloading tests were conducted and the damage index of fracture was identified using a three-dimensional digital image correlation system. The failure simulation results using the proposed damage model were compared with experimental, such as notched tensile, single edge notched tension (SENT), and full-scale burst tests.

References

1.
European Gas Pipeline Incident Data Group (EGIG),
2018
, “
Gas Pipeline Incidents (Period 1970–2016)
,” 10th Report of the EGIG, Groningen, The Netherlands.https://www.egig.eu/reports/$97/$157#:~:text=In%20the%20EGIG%20database%201%2C366,the%20period%20from%201970%2D2016.&text=Over%20the%20last%20ten%20years,of%20the%20pipeline%20incidents%20reported.
2.
ASME
,
1991
, “Manual for Determining the Remaining Strength of Corroded Pipelines,”
ASME
Paper No. B31G-1991.10.1115/B31G-1991
3.
Kiefner
,
J. F.
, and
Vieth
,
P. H.
,
1989
,
A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe
,
Battelle Memorial Institute
,
Columbus, OH
, Report No. PR-3-805.
4.
Fudfinnur Siqurdsson
,
E. H.
,
Gramer
,
O. H.
,
Bjornoy
,
B. F.
, and
Ritchie
,
D.
,
1999
, “
Introduction to DNV RP-F101, Corroded Pipelines
,” Proceeding of 18th International Conference on Offshore Mechanics and Arctic Engineering, St. Johns, NF, Canada, July 11–16, Paper No.
OMAE99/Pipe-5030
.http://tdl.libra.titech.ac.jp/journaldocs/en/recordID/article.bib-01/ZR000000605807?hit=-1&caller=xc-search
5.
Stephens
,
D. R.
,
Leis
,
B. N.
,
Kurre
,
M. D.
, and
Rudland
,
D. L.
,
1999
,
Development of an Alternative Failure Criterion for Residual Strength of Corrosion Defects in Moderate- to High-Toughness Pipe
,
Battelle Memorial Institute
,
Columbus, OH
, Report No. AGA-99001948.
6.
Choi
,
J. B.
,
Goo
,
B. K.
,
Kim
,
J. C.
,
Kim
,
Y. J.
, and
Kim
,
W. S.
,
2003
, “
Development of Limit Load Solutions for Corroded Gas Pipelines
,”
Int. J. Pressure Vessels Piping
,
80
(
2
), pp.
121
128
.10.1016/S0308-0161(03)00005-X
7.
Oh
,
C. K.
,
Kim
,
Y. J.
,
Baek
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2007
, “
Ductile Failure Analysis of API X65 Pipes With Notch-Type Defects Using a Local Fracture Criterion
,”
Int. J. Pressure Vessels Piping
,
84
(
8
), pp.
512
525
.10.1016/j.ijpvp.2007.03.002
8.
Chiodo
,
M. S. G.
, and
Ruggieri
,
C.
,
2009
, “
Failure Assessment of Corroded Pipelines With Axial Defects Using Stress-Based Criteria: Numerical Studies and Verification Analyses
,”
Int. J. Pressure Vessels Piping
,
86
(
2–3
), pp.
164
176
.10.1016/j.ijpvp.2008.11.011
9.
Yeom
,
K. J.
,
Lee
,
Y. K.
,
Oh
,
K. W.
, and
Kim
,
W. S.
,
2015
, “
Integrity Assessment of a Corroded API X70 Pipe With a Single Defect by Burst Pressure Analysis
,”
Eng. Failure Anal.
,
57
, pp.
553
561
.10.1016/j.engfailanal.2015.07.024
10.
Zhang
,
B.
,
Ye
,
C.
,
Liang
,
B.
,
Zhang
,
Z.
, and
Zhi
,
Y.
,
2014
, “
Ductile Failure Analysis and Crack Behavior of X65 Buried Pipes Using Extended Finite Element Method
,”
Eng. Failure Anal.
,
45
, pp.
26
40
.10.1016/j.engfailanal.2014.06.009
11.
Needleman
,
A.
, and
Tvergaard
,
V.
,
1984
, “
An Analysis of Ductile Rupture in Notched Bars
,”
J. Mech. Phys. Solids
,
32
(
6
), pp.
461
490
.10.1016/0022-5096(84)90031-0
12.
Lemaitre
,
J.
,
1985
, “
A Continuous Damage Mechanics for Ductile Fracture
,”
J. Eng. Mater. Technol.
,
107
(
1
), pp.
83
89
.10.1115/1.3225775
13.
Oh
,
C. S.
,
Kim
,
N. H.
,
Kim
,
Y. J.
,
Baek
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2011
, “
A Finite Element Ductile Failure Simulation Method Using Stress Modified Fracture Strain Model
,”
Eng. Fract. Mech.
,
78
(
1
), pp.
124
137
.10.1016/j.engfracmech.2010.10.004
14.
Jang
,
Y. C.
, and
Lee
,
Y.
,
2019
, “
A Method to Construct the Fracture Locus in the Range of High Stress Triaxiality When Only a Round Tensile Specimen is Available
,”
J. Mech. Sci. Technol.
,
33
(
3
), pp.
1195
1201
.10.1007/s12206-019-0219-z
15.
Kim
,
I. J.
,
Jang
,
Y. C.
,
Jang
,
Y. Y.
,
Moon
,
J. H.
, and
Huh
,
N. S.
,
2020
, “
Estimation of Tensile Strain Capacity for Thin-Walled API X70 Pipeline With Corrosion Defects Using the Fracture Strain Criteria
,”
J. Mech. Sci. Technol.
,
34
(
7
), pp.
2801
2812
.10.1007/s12206-020-0613-6
16.
ASTM
,
2013
,
Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
, Paper No. E8/E8M.
17.
Rashid
,
F. M.
, and
Banerjee
,
A.
,
2013
, “
Implementation and Validation of a Triaxiality Dependent Cohesive Model: Experiments and Simulations
,”
Int. J. Fract.
,
181
(
2
), pp.
227
239
.10.1007/s10704-013-9837-0
18.
Choung
,
J. M.
,
Shim
,
C. S.
, and
Song
,
H. C.
,
2012
, “
Estimation of Failure Strain of EH36 High Strength Marine Structural Steel Using Average Stress Triaxiality
,”
Mar. Struct.
,
29
(
1
), pp.
1
21
.10.1016/j.marstruc.2012.08.001
19.
Hancock
,
J. W.
, and
Mackenzie
,
A. C.
,
1976
, “
On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-Axial Stress-States
,”
J. Mech. Phys. Solid
,
24
(
2–3
), pp.
147
160
.10.1016/0022-5096(76)90024-7
20.
Mashayekhi
,
M.
,
Ziaei-Rad
,
S.
,
Parvizian
,
J.
,
Niklewicz
,
J.
, and
Hadavinia
,
H.
,
2007
, “
Ductile Crack Growth Based on Damage Criterion: Experimental and Numerical Studies
,”
Mech. Mater.
,
39
(
7
), pp.
623
636
.10.1016/j.mechmat.2006.10.004
21.
British Standard Institution
,
2014
,
Method of Test for Determination of Fracture Toughness in Metallic Materials Using Single Edge Notched Tension (SENT) Specimens
,
British Standard Institution
,
London
, UK, Paper No. BS 8571.
22.
Jang
,
Y. Y.
,
Kim
,
I. J.
,
Huh
,
N. S.
,
Kim
,
K. S.
, and
Kim
,
Y. P.
,
2019
, “
Numerical Investigation of the Transferability of Ductile Fracture Behavior Between Thin-Walled Surface-Cracked Pipe, Curved Wide Plate (CWP) and Single Edge Notched Tension (SENT) Specimens
,”
J. Mech. Sci. Technol.
,
33
(
9
), pp.
4233
4243
.10.1007/s12206-019-0820-1
23.
Hollomon
,
J. H.
,
1945
, “
Tensile Deformation
,”
Trans. Metall. Soc. AIME
,
162
, pp.
268
290
.https://www.scribd.com/document/255631757/Tensile-Deformation-John-Hollomon
24.
Achouri
,
M.
,
Germain
,
G.
,
Dal Santo
,
P.
, and
Saidane
,
D.
,
2013
, “
Experimental Characterization and Numerical Modeling of Micromechanical Damage Under Different Stress States
,”
Mater. Des.
,
50
, pp.
207
222
.10.1016/j.matdes.2013.02.075
25.
Dassault Systems
,
2018
,
ABAQUS Version 6.18, User's Manual
,
Dassault Systems, Vélizy-Villacoublay
,
France
.
You do not currently have access to this content.