Abstract

Explosion containment vessels (ECVs) can effectively limit the range of potential hazards, and improving their blast resistance is an important research topic. Placing ECVs underwater is an excellent and promising method. The effect of water covering on the blast resistance of circular plates was investigated experimentally and numerically in this paper. First, blast experiments of circular water-covered and bare plates were conducted, and strain responses were obtained. The effect of water on the maximum strain as well as the high-level strain crests was investigated based on experimental results. Then, numerical simulations were carried out using ansys/autodyn and validated by experimental results. The displacement and strain response at the center of the circular plate with different water cover heights were analyzed. The experimental and numerical results show that water can effectively reduce the peak dynamic response of the steel plate and increase the vibration period of the steel plate. The center of the circular plate is the most dangerous position under confined blast loading, regardless of whether the plate is covered with water or not. The results from numerical simulations also clearly show that the blast resistance of the steel plate will first be improved and then stable with the increase of the water cover height. The work in this paper can provide a useful reference for the design and protection of explosion containment vessels.

References

1.
Duffey
,
T. A.
, and
Romero
,
C.
,
2003
, “
Strain Growth in Spherical Explosive Chambers Subjected to Internal Blast Loading
,”
Int. J. Impact Eng.
,
28
(
9
), pp.
967
983
.10.1016/S0734-743X(02)00169-0
2.
Wang
,
Q.
,
Gong
,
J.
,
Li
,
Z.
,
Liu
,
S.
,
Shu
,
C.
,
Cheng
,
Y.
, and
Li
,
X.
,
2018
, “
Vibration Characteristics Analysis of Composite Double-Layer Explosive Vessel Shell Subjected to Explosion Loading
,”
Shock Vib.
,
2018
(
1
), pp.
1
10
.10.1155/2018/3714798
3.
Zheng
,
J. Y.
,
Xu
,
P.
, and
Chen
,
C.
,
1998
, “
Investigation on Bursting Pressure of Flat Steel Ribbon Wound Pressure Vessels
,”
Int. J. Pressure Vessels Piping
,
75
(
7
), pp.
581
587
.10.1016/S0308-0161(98)00061-1
4.
Chen
,
Y. J.
,
Wu
,
X. D.
,
Zheng
,
J. Y.
,
Deng
,
G. D.
, and
Li
,
Q. M.
,
2010
, “
Dynamic Responses of Discrete Multi-Layered Explosion Containment Vessels With the Consideration of Strain-Hardening and Strain-Rate Effects
,”
Int. J. Impact Eng.
,
37
(
7
), pp.
842
853
.10.1016/j.ijimpeng.2009.11.011
5.
Dong
,
Q.
, and
Hu
,
B.
,
2016
, “
Dynamic Behavior of Carbon Fiber Explosion Containment Vessels
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p.
011202
.10.1115/1.4030435
6.
Dong
,
Q.
,
Wang
,
P.
,
Yi
,
C.
, and
Hu
,
B.
,
2016
, “
Dynamic Failure Behavior of Cylindrical Glass Fiber Composite Shells Subjected to Internal Blast Loading
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
060901
.10.1115/1.4032433
7.
Lin
,
G.
,
Li
,
F.
,
Zhang
,
Q.
,
Chen
,
P.
,
Sun
,
W.
,
Saikov
,
I.
,
Shcherbakov
,
V.
, and
Alymov
,
M.
,
2022
, “
Dynamic Instability of Fiber Composite Cylindrical Shell With Metal Liner Subjected to Internal Pulse Loading
,”
Compos. Struct.
,
280
, p.
114906
.10.1016/j.compstruct.2021.114906
8.
Sidorenko
,
Y. M.
, and
Shlenskii
,
P. S.
,
2013
, “
On the Assessment of Stress–Strain State of the Load-Bearing Structural Elements in the Tubular Explosion Chamber
,”
Strength Mater.
,
45
(
2
), pp.
210
220
.10.1007/s11223-013-9450-5
9.
Dong
,
Q.
,
Li
,
Q. M.
, and
Zheng
,
J. Y.
,
2010
, “
Interactive Mechanisms Between the Internal Blast Loading and the Dynamic Elastic Response of Spherical Containment Vessels
,”
Int. J. Impact Eng.
,
37
(
4
), pp.
349
358
.10.1016/j.ijimpeng.2009.10.004
10.
Liu
,
X.
,
Gu
,
W. B.
,
Liu
,
J. Q.
,
Xu
,
J. L.
,
Hu
,
Y. H.
, and
Hang
,
Y. M.
,
2020
, “
Dynamic Response of Cylindrical Explosion Containment Vessels Subjected to Internal Blast Loading
,”
Int. J. Impact Eng.
,
135
, p.
103389
.10.1016/j.ijimpeng.2019.103389
11.
Kong
,
X.
,
Wu
,
W.
,
Li
,
J.
,
Chen
,
P.
, and
Liu
,
F.
,
2014
, “
Experimental and Numerical Investigation on a Multi-Layer Protective Structure Under the Synergistic Effect of Blast and Fragment Loadings
,”
Int. J. Impact Eng.
,
65
, pp.
146
162
.10.1016/j.ijimpeng.2013.11.009
12.
Srinivas Kumar
,
A.
,
Umapathi Gokul
,
K.
,
Venkata Krushna Rao
,
P.
, and
Jagannadham
,
A.
,
2015
, “
Blast Loading of Underwater Targets—A Study Through Explosion Bulge Test Experiments
,”
Int. J. Impact Eng.
,
76
, pp.
189
195
.10.1016/j.ijimpeng.2014.09.007
13.
Li
,
Y.
,
Zhang
,
L.
,
Xiao
,
D.
,
Zhao
,
T.
,
Du
,
Z.
,
Wu
,
W.
, and
Fang
,
D.
,
2019
, “
Experiment and Numerical Study on Dynamic Response of Liquid Cabin Under Internal Blast Loading
,”
Thin-Walled Struct.
,
145
, p.
106405
.10.1016/j.tws.2019.106405
14.
Wang
,
Y.
,
Liew
,
J. Y. R.
, and
Lee
,
S. C.
,
2015
, “
Structural Performance of Water Tank Under Static and Dynamic Pressure Loading
,”
Int. J. Impact Eng.
,
85
, pp.
110
123
.10.1016/j.ijimpeng.2015.06.018
15.
Wang
,
Y.
, and
Zhou
,
H.
,
2015
, “
Numerical Study of Water Tank Under Blast Loading
,”
Thin-Walled Struct.
,
90
, pp.
42
48
.10.1016/j.tws.2015.01.012
16.
Cheng
,
S.
,
Li
,
X.
,
Wang
,
Y.
,
Zhou
,
D.
,
Yan
,
H.
, and
Wang
,
Q.
,
2021
, “
Analysis of Explosion Load in a Cylindrical Container With Sand Bottom
,”
ASME J. Pressure Vessel Technol.
,
143
(
3
), p.
031401
.10.1115/1.4048417
17.
Zhou
,
D.
,
Li
,
X.
,
Wang
,
Y.
,
Wang
,
J.
,
Yan
,
H.
, and
Wang
,
X.
,
2023
, “
Research on Evolution of Shock Wave of Ground Explosion in Pit Type Explosion Containment Vessel
,”
Structures (Oxford)
,
50
, pp.
1164
1172
.10.1016/j.istruc.2023.02.082
18.
Chen
,
P. W.
,
Liu
,
H.
,
Ding
,
Y. S.
,
Guo
,
B. Q.
,
Chen
,
J. J.
, and
Liu
,
H. B.
,
2016
, “
Dynamic Deformation of Clamped Circular Plates Subjected to Confined Blast Loading
,”
Strain
,
52
(
6
), pp.
478
491
.10.1111/str.12190
19.
Zheng
,
C.
,
Kong
,
X.
,
Wu
,
W.
,
Xu
,
S.
, and
Guan
,
Z.
,
2018
, “
Experimental and Numerical Studies on the Dynamic Response of Steel Plates Subjected to Confined Blast Loading
,”
Int. J. Impact Eng.
,
113
, pp.
144
160
.10.1016/j.ijimpeng.2017.11.013
20.
Zhao
,
N.
,
Yao
,
S.
,
Zhang
,
D.
,
Lu
,
F.
, and
Sun
,
C.
,
2020
, “
Experimental and Numerical Studies on the Dynamic Response of Stiffened Plates Under Confined Blast Loads
,”
Thin-Walled Struct.
,
154
, p.
106839
.10.1016/j.tws.2020.106839
21.
Laine
,
L.
,
Sandvik
,
A.
,
2001
, “
Derivation of Mechanical Properties for Sand
,”
Proceedings of the 4th Asia-Pacific Conference on Shock and Impact Loads on Structures
, Singapore, Nov. 21–23, pp.
361
368
.https://www.msb.se/siteassets/dokument/amnesomraden/krisberedskap-och-civilt-forsvar/befolkningsskydd/skyddsrum/vetenskapliga-artiklar/derivation-of-mechanical-properties-for-sand.pdf
22.
Chen
,
S.
,
Luo
,
Y.
, and
Yang
,
Z.
,
2010
, “
Temperature Reduction Analysis of Pre-Cracked PVC Sheet in Elastic Deformation Under a Tension Load
,”
J. Cent. South Univ. For. Technol.
,
30
(
11
), pp.
136
139 (in Chinese
).
You do not currently have access to this content.