Abstract

This study investigates the use of nonuniform finned tubes in tandem arrangements with different spacing-to-average equivalent diameter ratios (L/Deq(avg)) to suppress flow-induced acoustic resonance. Particle image velocimetry (PIV) was used to visualize vortex development in the wake before and during acoustic resonance, while acoustic pressure measurements characterized the aeroacoustic response. Nonuniform finned tubes were found to weaken the vortex shedding process and reduce the sound pressure level (SPL) by 68% and 50% during flow-induced acoustic resonance at L/Deq(avg)=2.0 and 2.5, respectively. However, nonuniform finned tubes do not inhibit the instability of the shear layers within the gap, making them susceptible to acoustic resonance where the shear layer instability is the source of excitation. During acoustic resonance associated with the shear layer instability, highly discrete and well-organized vortex cores form in the gap and wake of both uniform and nonuniform finned tubes, producing similar SPLs to those generated by uniform finned tubes. The findings of this study indicate that varying the fin density along the cylinders can potentially be used to suppress acoustic resonance excitation in normal triangle and rotated square tube arrays where vortex shedding is the main source of excitation at L/Deq(avg)2.5.

References

1.
Ziada
,
S.
,
2006
, “
Vorticity Shedding and Acoustic Resonance in Tube Bundles
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
2
), pp.
186
189
.10.1590/S1678-58782006000200008
2.
Elhelaly
,
A.
,
Hassan
,
M.
,
Weaver
,
D.
,
Riznic
,
J. R.
, and
Moussa
,
S.
,
2024
, “
Effect of Pitch Ratio and Tube Support Conditions on the Dynamic Behavior of a Low Mass-Damping Parameter Parallel Triangular Array
,”
ASME J. Pressure Vessel Technol.
,
146
(
3
), p.
031401
.10.1115/1.4065366
3.
Elhelaly
,
A.
,
Hassan
,
M.
, and
Moran
,
J.
,
2024
, “
Investigation of Fluidelastic Instability in Rotated Square Tube Arrays Subjected to Air Flow
,”
Nucl. Eng. Des.
,
428
, p.
113445
.10.1016/j.nucengdes.2024.113445
4.
Elhelaly
,
A.
,
Hassan
,
M. A.
,
Weaver
,
D. S.
,
Riznic
,
J.
, and
Moussa
,
S. E.
,
2024
, “
Investigation of Fluidelastic Instability in Parallel Triangular Tube Arrays Subjected to Air Flow
,”
ASME J. Pressure Vessel Technol.
,
146
(
5
), p.
051401
.10.1115/1.4065792
5.
Benguigui
,
W.
,
Benhamadouche
,
S.
,
Beltran
,
F.
, and
Hassan
,
M.
,
2024
, “
Experimental and Numerical Contributions on Flow-Induced Vibration in Steam-Generator-Like Tube Bundles: A Review
,”
Nucl. Eng. Des.
,
424
, p.
113305
.10.1016/j.nucengdes.2024.113305
6.
Paidoussis
,
M.
,
1983
, “
A Review of Flow-Induced Vibrations in Reactors and Reactor Components
,”
Nucl. Eng. Des.
,
74
(
1
), pp.
31
60
.10.1016/0029-5493(83)90138-3
7.
Ziada
,
S.
,
Jebodhsingh
,
D.
,
Weaver
,
D.
, and
Eisinger
,
F.
,
2005
, “
The Effect of Fins on Vortex Shedding From a Cylinder in Cross-Flow
,”
J. Fluids Struct.
,
21
(
5–7
), pp.
689
705
.10.1016/j.jfluidstructs.2004.12.003
8.
Arafa
,
N.
, and
Mohany
,
A.
,
2019
, “
Wake Structures and Acoustic Resonance Excitation of a Single Finned Cylinder in Cross-Flow
,”
J. Fluids Struct.
,
86
, pp.
70
93
.10.1016/j.jfluidstructs.2019.01.025
9.
Islam
,
M.
, and
Mohany
,
A.
,
2020
, “
On the Three-Dimensional Flow Development Around Circular Finned Cylinders
,”
Phys. Fluids
,
32
(
11
), p.
115116
.10.1063/5.0026603
10.
Islam
,
M.
, and
Mohany
,
A.
,
2020
, “
Vortex Shedding Characteristics in the Wake of Circular Finned Cylinders
,”
Phys. Fluids
,
32
(
4
), p.
045113
.10.1063/5.0005079
11.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2022
, “
Vortex Dynamics of Tandem Bare and Spiral Finned Cylinders in Cross-Flow and Their Susceptibility to Acoustic Resonance Excitation
,”
Phys. Fluids
,
34
(
4
), p.
045105
.10.1063/5.0086212
12.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2022
, “
Vortex Shedding Characteristics and Aerodynamic Forces of a Finned Cylinder in Cross-Flow
,”
Phys. Fluids
,
34
(
9
), p.
095110
.10.1063/5.0109082
13.
Arafa
,
N.
, and
Mohany
,
A.
,
2015
, “
Aeroacoustic Response of a Single Cylinder With Straight Circular Fins in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051301
.10.1115/1.4029658
14.
Islam
,
M. R.
,
Shaaban
,
M.
, and
Mohany
,
A.
,
2020
, “
Vortex Dynamics and Acoustic Sources in the Wake of Finned Cylinders During Resonance Excitation
,”
Phys. Fluids
,
32
(
7
), p.
075117
.10.1063/5.0016076
15.
Islam
,
M. R.
, and
Mohany
,
A.
,
2021
, “
Flow-Induced Acoustic Resonance of Finned Cylinders With Varying Fin Heights
,”
ASME J. Pressure Vessel Technol.
,
143
(
4
), p.
041405
.10.1115/1.4049709
16.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2022
, “
Applicability of the Equivalent Diameter Approach to Estimate Vortex Shedding Frequency and Acoustic Resonance Excitation From Different Finned Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
144
(
4
), p.
041406
.10.1115/1.4053015
17.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2023
, “
Flow Structure and Aerodynamic Forces of Finned Cylinders During Flow-Induced Acoustic Resonance
,”
J. Fluids Struct.
,
119
, p.
103887
.10.1016/j.jfluidstructs.2023.103887
18.
Oengören
,
A.
, and
Ziada
,
S.
,
1992
, “
Vorticity Shedding and Acoustic Resonance in an In-Line Tube Bundle Part II: Acoustic Resonance
,”
J. Fluids Struct.
,
6
(
3
), pp.
293
309
.10.1016/0889-9746(92)90011-Q
19.
Halvers
,
L.
,
1977
, “Flow-Induced and Acoustically Induced Vibration Experience in Operating Gas-Cooled Reactors,” General Atomics, San Diego, CA, Report No.
GA-A-14291
.https://www.osti.gov/servlets/purl/7105200
20.
Ziada
,
S.
,
2010
, “
Flow-Excited Acoustic Resonance in Industry
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
015001
.10.1115/1.4000379
21.
Elhelaly
,
A.
,
Hassan
,
M.
,
Mohany
,
A.
, and
Moussa
,
S. E.
,
2020
, “
Effect of the Flow Approach Angle on the Dynamics of Loosely-Supported Tube Arrays
,”
Nucl. Eng. Des.
,
368
, p.
110802
.10.1016/j.nucengdes.2020.110802
22.
Mohany
,
A.
,
Alziadeh
,
M.
, and
Hassan
,
M.
,
2023
, “
Vorticity Shedding and Acoustic Resonance Excitation of a Square Tube Array: Effect of Flow Approach Angle
,”
ASME J. Pressure Vessel Technol.
,
145
(
1
), p.
011401
.10.1115/1.4055158
23.
Eisinger
,
F.
, and
Sullivan
,
R.
,
2003
, “
Suppression of Acoustic Waves in Steam Generator and Heat Exchanger Tube Banks
,”
ASME J. Pressure Vessel Technol.
,
125
(
2
), pp.
221
227
.10.1115/1.1565079
24.
Feenstra
,
P.
,
Weaver
,
D.
, and
Eisinger
,
F. L.
,
2006
, “
A Study of Acoustic Resonance in a Staggered Tube Array
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
533
540
.10.1115/1.2349563
25.
Blevins
,
R.
, and
Bressler
,
M.
,
1987
, “
Acoustic Resonance in Heat Exchanger Tube Bundles—Part II: Prediction and Suppression of Resonance
,”
ASME J. Pressure Vessel Technol.
,
109
(
3
), pp.
282
288
.10.1115/1.3264864
26.
Cattafesta
,
L.
,
Alvi
,
F.
,
Williams
,
D.
, and
Rowley
,
C.
,
2003
, “
Review of Active Control of Flow-Induced Cavity Oscillations
,”
AIAA
Paper No. 2003-3567.10.2514/6.2003-3567
27.
Ziada
,
S.
,
2001
, “
Interaction of a Jet-Slot Oscillator With a Deep Cavity Resonator and Its Control
,”
J. Fluids Struct.
,
15
(
6
), pp.
831
843
.10.1006/jfls.2000.0379
28.
Hamakawa
,
H.
,
Ito
,
Y.
,
Kamo
,
R.
, and
Nishida
,
E.
,
2011
, “
Effect of Helical Strakes Around a Finned Tube on Aeolian Tone
,”
ASME
Paper No. AJK2011-08005.10.1115/AJK2011-08005
29.
Assi
,
G. R.
,
Crespi
,
T.
, and
Gharib
,
M.
,
2022
, “
Novel Geometries of Serrated Helical Strakes to Suppress Vortex-Induced Vibrations and Reduce Drag
,”
Appl. Ocean Res.
,
120
, p.
103034
.10.1016/j.apor.2021.103034
30.
Yadegari
,
M.
,
Bak Khoshnevis
,
A.
, and
Boloki
,
M.
,
2023
, “
An Experimental Investigation of the Effects of Helical Strakes on the Characteristics of the Wake Around the Circular Cylinder
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
,
47
(
1
), pp.
67
80
.10.1007/s40997-022-00494-0
31.
Cicolin
,
M.
,
Buxton
,
O.
,
Assi
,
G.
, and
Bearman
,
P.
,
2021
, “
The Role of Separation on the Forces Acting on a Circular Cylinder With a Control Rod
,”
J. Fluid Mech.
,
915
, p.
A33
.10.1017/jfm.2021.64
32.
Gao
,
D.
,
Chang
,
X.
,
Tursuntohti
,
T.
,
Yu
,
H.
, and
Chen
,
W.-L.
,
2022
, “
Modification of Subcritical Cylinder Flow With an Upstream Rod
,”
Phys. Fluids
,
34
(
1
), p.
015107
.10.1063/5.0075167
33.
Noufal
,
R.
,
Alziadeh
,
M.
, and
Mohany
,
A.
,
2024
, “
Control of Vortex Shedding and Acoustic Resonance of a Circular Cylinder in Cross-Flow
,”
J. Fluids Struct.
,
126
, p.
104094
.10.1016/j.jfluidstructs.2024.104094
34.
Quen
,
L. K.
,
Abu
,
A.
,
Kato
,
N.
,
Muhamad
,
P.
,
Sahekhaini
,
A.
, and
Abdullah
,
H.
,
2014
, “
Investigation on the Effectiveness of Helical Strakes in Suppressing VIV of Flexible Riser
,”
Appl. Ocean Res.
,
44
, pp.
82
91
.10.1016/j.apor.2013.11.006
35.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2019
, “
Passive Noise Control Technique for Suppressing Acoustic Resonance Excitation of Spirally Finned Cylinders in Cross-Flow
,”
Exp. Therm. Fluid Sci.
,
102
, pp.
38
51
.10.1016/j.expthermflusci.2018.10.029
36.
Sumner
,
D.
,
2010
, “
Two Circular Cylinders in Cross-Flow: A Review
,”
J. Fluids Struct.
,
26
(
6
), pp.
849
899
.10.1016/j.jfluidstructs.2010.07.001
37.
Mohany
,
A.
, and
Ziada
,
S.
,
2005
, “
Flow-Excited Acoustic Resonance of Two Tandem Cylinders in Cross-Flow
,”
J. Fluids Struct.
,
21
(
1
), pp.
103
119
.10.1016/j.jfluidstructs.2005.05.018
38.
Mohany
,
A.
, and
Ziada
,
S.
,
2009
, “
Numerical Simulation of the Flow-Sound Interaction Mechanisms of a Single and Two-Tandem Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
131
(
3
), p.
031306
.10.1115/1.3110029
39.
Mohany
,
A.
, and
Ziada
,
S.
,
2009
, “
A Parametric Study of the Resonance Mechanism of Two Tandem Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021302
.10.1115/1.3027452
40.
Shaaban
,
M.
, and
Mohany
,
A.
,
2015
, “
Parametric Investigation of the Flow-Excited Acoustic Resonance From Multiple In-Line Cylinders in Cross-Flow
,”
ASME
Paper No. PVP2015-45650.10.1115/PVP2015-45650
41.
Shaaban
,
M.
, and
Mohany
,
A.
,
2020
, “
Experimental Study of the Self-Excited Resonance Effect on the Dynamic Lift and Flow Structure Around Inline Cylinders
,”
J. Fluids Struct.
,
96
, p.
103015
.10.1016/j.jfluidstructs.2020.103015
42.
Shaaban
,
M.
, and
Mohany
,
A.
,
2019
, “
Characteristics of Acoustic Resonance Excitation by Flow Around Inline Cylinders
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
051301
.10.1115/1.4044118
43.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2021
, “
Vorticity Shedding and Acoustic Resonance Excitation of Two Tandem Spirally Finned Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
143
(
2
), p.
021405
.10.1115/1.4048102
44.
Zdravkovich
,
M.
,
1985
, “
Flow Induced Oscillations of Two Interfering Circular Cylinders
,”
J. Sound Vib.
,
101
(
4
), pp.
511
521
.10.1016/S0022-460X(85)80068-7
45.
Mair
,
W. A.
,
Jones
,
P. D. F.
, and
Palmer
,
R. K. W.
,
1975
, “
Vortex Shedding From Finned Tubes
,”
J. Sound Vib.
,
39
(
3
), pp.
293
296
.10.1016/S0022-460X(75)80082-4
46.
Alziadeh
,
M.
,
2017
, “
Flow-Sound Interaction Mechanism of a Single Spirally Finned Cylinder in Cross-Flow
,”
M.S. thesis
,
University of Ontario Institute of Technology (Canada)
,
Oshawa, ON, Canada
.10.13140/RG.2.2.12457.65123
47.
Tang
,
L.
,
Zeng
,
M.
, and
Wang
,
Q.
,
2009
, “
Experimental and Numerical Investigation on Air-Side Performance of Fin-and-Tube Heat Exchangers With Various Fin Patterns
,”
Exp. Therm. Fluid Sci.
,
33
(
5
), pp.
818
827
.10.1016/j.expthermflusci.2009.02.008
48.
Keawkamrop
,
T.
,
Asirvatham
,
L. G.
,
Dalkılıç
,
A. S.
,
Ahn
,
H. S.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2021
, “
An Experimental Investigation of the Air-Side Performance of Crimped Spiral Fin-and-Tube Heat Exchangers With a Small Tube Diameter
,”
Int. J. Heat Mass Transfer
,
178
, p.
121571
.10.1016/j.ijheatmasstransfer.2021.121571
49.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2018
, “
Near-Wake Characteristics and Acoustic Resonance Excitation of Crimped Spirally Finned Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
051301
.10.1115/1.4040549
50.
Arafa
,
N.
,
Tariq
,
A.
,
Mohany
,
A.
, and
Hassan
,
M.
,
2014
, “
Effect of Cylinder Location Inside a Rectangular Duct on the Excitation Mechanism of Acoustic Resonance
,”
Can. Acoust.
,
42
(
1
), pp.
33
40
.https://jcaa.caa-aca.ca/index.php/jcaa/article/view/2609
51.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
2000
, “
Advances in Iterative Multigrid PIV Image Processing
,”
Exp. Fluids
,
29
(
7
), pp.
S051
S060
.10.1007/s003480070007
52.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.10.1007/s00348-005-0016-6
53.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.10.1088/0957-0233/26/7/074002
54.
Xu
,
G.
, and
Zhou
,
Y.
,
2004
, “
Strouhal Numbers in the Wake of Two Inline Cylinders
,”
Exp. Fluids
,
37
(
2
), pp.
248
256
.10.1007/s00348-004-0808-0
55.
Van Oudheusden
,
B.
,
Scarano
,
F.
,
Van Hinsberg
,
N.
, and
Watt
,
D.
,
2005
, “
Phase-Resolved Characterization of Vortex Shedding in the Near Wake of a Square-Section Cylinder at Incidence
,”
Exp. Fluids
,
39
(
1
), pp.
86
98
.10.1007/s00348-005-0985-5
56.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program
.https://ntrs.nasa.gov/citations/19890015184
57.
Marble
,
E.
,
Morton
,
C.
, and
Yarusevych
,
S.
,
2018
, “
Vortex Dynamics in the Wake of a Pivoted Cylinder Undergoing Vortex-Induced Vibrations With Elliptic Trajectories
,”
Exp. Fluids
,
59
(
5
), p. 78.10.1007/s00348-018-2530-3
58.
Brown
,
G. L.
, and
Roshko
,
A.
,
1974
, “
On Density Effects and Large Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
,
64
(
4
), pp.
775
816
.10.1017/S002211207400190X
59.
Rowley
,
C. W.
,
Colonius
,
T.
, and
Basu
,
A. J.
,
2002
, “
On Self-Sustained Oscillations in Two-Dimensional Compressible Flow Over Rectangular Cavities
,”
J. Fluid Mech.
,
455
, pp.
315
346
.10.1017/S0022112001007534
60.
Bres
,
G. A.
, and
Colonius
,
T.
,
2008
, “
Three-Dimensional Instabilities in Compressible Flow Over Open Cavities
,”
J. Fluid Mech.
,
599
, pp.
309
339
.10.1017/S0022112007009925
61.
Abdelmwgoud
,
M.
, and
Mohany
,
A.
,
2021
, “
Control of the Self-Sustained Shear Layer Oscillations Over Rectangular Cavities Using High-Frequency Vortex Generators
,”
Phys. Fluids
,
33
(
4
), p.
045115
.10.1063/5.0048582
You do not currently have access to this content.