Abstract

As a lesson learned from the Fukushima nuclear accident, the importance of accident mitigation for beyond-design basis events (BDBEs) is recognized. Excessive earthquake is a typical BDBE. During such events, the fast reactor vessel (FRV) is vulnerable to buckling. The safety goal of FRV under excessive earthquake is to achieve a stable post-buckling state. Our previous study on bending buckling confirmed a global response stability under horizontal vibration. As a parallel study, this paper focuses on axial compression buckling under vertical vibration. Shaking table experiments using thin-walled cylindrical models (R/t = 260) are carried out. Similar methodology is applied to investigate the buckling and post-buckling behavior. It is found that axial compression buckling shares an extensive similarity with bending buckling in both buckling mode and post-buckling behavior. Similar global response stability is confirmed due to phase-inverse phenomenon. After buckling, buckling failure becomes stable and does not progress further even when an intense input amplitude is continuously applied. The vibrational load acts as a displacement-controlled load in the out-of-phase domain such that immediate collapse is prevented. Most input energy is dissipated in hysteresis loops rather than being carried by the mass. These mechanisms are independent of input waveform and can be applied to an arbitrary seismic input. In addition, a conservative limit displacement for global response stability is identified. Moreover, the effect of the input frequency ratio, the initial geometrical imperfection, and the gravitational force on the post-buckling behavior are clarified.

References

1.
Kasahara
,
N.
,
Sato
,
T.
, and
Blahoianu
,
A.
,
2018
, “
Contribution to Safety Enhancement for BDBE in Structure and Material Fields
,”
ASME
Paper No. PVP2018-84353.10.1115/PVP2018-84353
2.
Kasahara
,
N.
,
Wakai
,
T.
,
Nakamura
,
I.,
et al.,
2019
, “
Research Plan and Progress to Realize Fracture Control of Nuclear Components
,”
ASME
Paper No. PVP2019-93545.10.1115/PVP2019-93545
3.
Lyu
,
J.
,
Ichimiya
,
M.
,
Sasaki
,
R.
, and
Kasahara
,
N.
,
2020
, “
Ratcheting Occurrence Conditions of Piping Under Sinusoidal Excitations
,”
JSME Mech. Eng. J.
,
7
(
4
), pp.
20
00167
.10.1299/mej.20-00167
4.
Lyu
,
J.
,
Ichimiya
,
M.
,
Bari
,
M. A. A.
,
Sasaki
,
R.
, and
Kasahara
,
N.
,
2020
, “
Study on Ratcheting of Beams Under the Combination of Gravity and Seismic Load
,”
JSME Mech. Eng. J.
,
7
(
3
), p.
19
00384
.10.1299/mej.19-00384
5.
International Atomic Energy Agency
,
2016
, “
Safety of Nuclear Power Plants: Design Specific Safety Requirements (Rev.1)
,” International Atomic Energy Agency, Vienna, Austria, IAEA Safety Standards Series No. SSR-2/1.
6.
Canadian Standard Association,
2016
, “
Requirements for Beyond Design Basis Accidents
,” Canadian Standard Association, Toronto, ON, Canada, No. CSA N290.16: 2016.
7.
Kasahara
,
N.
,
Wakai
,
T.
,
Nakamura
,
I.
,
Sato
,
T.
, and
Ichimiya
,
M.
,
2020
, “
Application of Fracture Control to Mitigate Failure Consequence Under BDBE
,”
ASME
Paper No. PVP2020-21072.10.1115/PVP2020-21072
8.
Hagiwara
,
Y.
,
Akiyama
,
H.
,
Kokubo
,
K.
, and
Sawada
,
Y.
,
1991
, “
Post-Buckling Behavior During Earthquakes and Seismic Margin of FBR Main Vessels
,”
Int. J. Pressure Vessel Piping
,
45
(
3
), pp.
259
271
.10.1016/0308-0161(91)90001-I
9.
Hagiwara
,
Y.
,
Kawamoto
,
Y.
,
Nakagawa
,
M.
, and
Akiyama
,
H.
,
1993
, “
Dynamic Buckling and Nonlinear Response of Fast Breeder Reactor Main Vessels Under Earthquake Loading
,”
JSME Int. J. Ser. B
,
36
(
3
), pp.
476
484
.10.1299/jsmeb.36.476
10.
Kasahara
,
N.
,
Al Bari
,
M.
, and
Sakemi
,
R.
,
2020
, “
Failure Modes of Piping Under Seismic Loads Which Have Both Load and Displacement-Controlled Characteristics
,”
Int. J. Pressure Vessel Piping
,
179
, p.
103938
.10.1016/j.ijpvp.2019.103938
11.
Hirde
,
D. S. K.
, and
Mohabansi
,
A. S.
,
2014
, “
Seismic Evaluation of Steel Silos With Different Aspect Ratio
,”
J. Emerg. Technol. Innovative Res.
,
9
(
9
), pp.
868
875
.http://www.jetir.org/papers/JETIR2209503.pdf
12.
Hamdan
,
F. H.
,
2000
, “
Seismic Behavior of Cylindrical Steel Liquid Storage Tanks
,”
J. Constr. Steel Res.
,
53
(
3
), pp.
307
333
.10.1016/S0143-974X(99)00039-5
13.
Virella
,
J. C.
,
Godoy
,
L. A.
, and
Suárez
,
L. E.
,
2006
, “
Dynamic Buckling of Anchored Steel Tanks Subjected to Horizontal Earthquake Excitation
,”
J. Constr. Steel Res.
,
62
(
6
), pp.
521
531
.10.1016/j.jcsr.2005.10.001
14.
Nie
,
G.
,
Zhang
,
C.
,
Li
,
D.
,
Chen
,
Q.
, and
Wang
,
Z.
,
2021
, “
Collapse of the Spatial Double-Layer Cylinder Shell by Experimental Study
,”
Eng. Struct.
,
245
, p.
112862
.10.1016/j.engstruct.2021.112862
15.
Akiyama
,
H.
,
Ohtsubo
,
H.
,
Nakamura
,
H.
,
Matsuura
,
S.
,
Hagiwara
,
Y.
,
Yuhara
,
T.
,
Hirayama
,
H.
,
Kokubo
,
K.
, and
Ooka
,
Y.
,
1993
, “
Outline of the Seismic Buckling Design Guideline of an FBR-a Tentative Draft
,”
Nucl. Eng. Des.
,
140
(
3
), pp.
319
330
.10.1016/0029-5493(93)90115-P
16.
Ogiso
,
S.
,
Sasaki
,
T.
,
Ooka
,
Y.
,
Nakamura
,
H.
, and
Akiyama
,
H.
,
1993
, “
Cyclic Post-Buckling Tests for Low Cycle Fatigue Failure of Buckled Cylinders by Shear and Bending Modes
,”
IASMiRT-12
, Stuttgart, Germany, Aug. 15–20, pp.
287
292
.https://inis.iaea.org/search/search.aspx?orig_q=RN:36010577
17.
Ogiso
,
S.
,
Sasaki
,
T.
, and
Ooka
,
Y.
,
1995
, “
Estimation of Post-Buckling Fatigue Damage for LMFBR Reactor Vessel Under Seismic Load
,”
IASMiRT-13
, Porto Alegre, Brazil, Aug. 13–18, pp.
475
480
.
18.
Matsuura
,
S.
,
Nakamura
,
H.
,
Ogiso
,
S.
,
Murakami
,
T.
, and
Kawamoto
,
Y.
,
1993
, “
Formulae for Evaluating Buckling Strength of FBR Main Vessels Under Earthquake Loading
,”
JSME Int. J. Ser. B
,
36
(
3
), pp.
485
492
.10.1299/jsmeb.36.485
19.
Matsuura
,
S.
,
Nakamura
,
H.
,
Kokubo
,
K.
,
Ogiso
,
S.
, and
Ohtsubo
,
H.
,
1995
, “
Shear-Bending Buckling Analyses Of Fast Breeder Reactor Main Vessels
,”
Nucl. Eng. Des.
,
153
(
2–3
), pp.
305
317
.10.1016/0029-5493(95)90021-7
20.
Nakamura
,
H.
,
Matsuura
,
S.
,
Kawamoto
,
Y.
, and
Yuhara
,
T.
,
1998
, “
Studies on the Seismic Buckling Design Guideline of FBR Main Vessels-Effect of Thermal Loads on Shear-Bending Buckling Strength of Main Vessels
,”
JSME Int. J. Ser. A
,
41
(
4
), pp.
554
561
.10.1299/jsmea.41.554
21.
Nakagawa
,
M.
,
Fukuyama
,
M.
,
Ishihama
,
K.
,
Ikeuchi
,
H.
,
Hagiwara
,
Y.
, and
Akiyama
,
H.
,
1995
, “
Pseudo-Dynamic Buckling Experiments on Thin Cylindrical Shells Under Biaxial Seismic Loads
,”
Nucl. Eng. Des.
,
157
(
1–2
), pp.
27
36
.10.1016/0029-5493(95)00983-J
22.
Akiyama
,
H.
,
1987
, “
Post-Buckling Behavior of Steel Cylindrical Shells During Earthquakes
,”
Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology
, Lausanne, Switzland, Aug. 17–21, pp.
415
422
.https://inis.iaea.org/search/search.aspx?orig_q=RN:19059287
23.
Kokubo
,
K.
,
Nakamura
,
N.
,
Madokoro
,
M.
, and
Sakurai
,
A.
,
1987
, “
Buckling Behaviors of Short Cylindrical Shells Under Dynamic Loads
,”
Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology
, Lausanne, Switzland, Aug. 17–21, pp.
167
172
.https://books.google.co.in/books?hl=en&lr=&id=uoQcQRcqEgwC&oi=fnd&pg=PA167&dq=Buckling+Behaviors+of+Short+Cylindrical+Shells+Under+Dynamic+Loads&ots=ocagKnJtJ3&sig=41YRq2nR2lKiLRTR1JbDyXlQtz8#v=onepage&q=Buckling%20Behaviors%20of%20Short%20Cylindrical%20Shells%20Under%20Dynamic%20Loads&f=false
24.
Ye
,
Y.
,
Hasegawa
,
S.
,
Ichimiya
,
M.
, and
Kasahara
,
N.
,
2024
, “
Study on Dynamic Post-Buckling Stability of Thin-Walled Cylinders Subjected to Horizontal Vibration
,”
ASME J. Pressure Vessel Technol.
,
146
(
3
), p.
031303
.10.1115/1.4065176
25.
Ye
,
Y.
,
Ichimiya
,
M.
,
Kasahara
,
N.
, and
Takahashi
,
Y.
,
2024
, “
Study on Post-Buckling Crack Propagation in Thin-Walled Cylinders Under Dynamic Cyclic Load
,”
JSME Mech. Eng. J.
,
11
(
1
), p.
23
00491
.10.1299/mej.23-00491
26.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
, 2nd ed.,
McGraw-Hill
,
New York
.
27.
Teng
,
J. G.
, and
Rotter
,
J. M.
, eds.,
2004
,
Buckling of Thin Metal Shells
, 1st ed.,
CRC Press
,
London, UK
.
28.
Goto
,
Y.
, and
Zhang
,
C.
,
1999
, “
Plastic Buckling Transition Modes in Moderately Thick Cylindrical Shells
,”
J. Eng. Mech.
,
125
(
4
), pp.
426
434
.10.1061/(ASCE)0733-9399(1999)125:4(426)
29.
Zhang
,
C.
,
Liu
,
Y.
, and
Goto
,
Y.
,
2008
, “
Plastic Buckling of Cylindrical Shells Under Transverse Loading
,”
Tsinghua Sci. Technol.
,
13
(
2
), pp.
202
210
.10.1016/S1007-0214(08)70034-8
30.
National Research Institute for Earth Science and Disaster Resilience
,
2019
, “
NIED K-NET, KiK-Net, National Research Institute for Earth Science and Disaster Resilience
,” National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan.
31.
Uang
,
C. M.
, and
Bertero
,
V. V.
,
1990
, “
Evaluation of Seismic Energy in Structures
,”
Earthquake Eng. Struct. Dyn.
,
19
(
1
), pp.
77
90
.10.1002/eqe.4290190108
32.
Molina
,
F.
, and
Pegon
,
P.
,
2021
, “
Least-Square Effective Stiffness to Be Used for Equivalent Linear Model
,”
Energy-Based Seismic Engineering. IWEBSE 2021. Lecture Notes in Civil Engineering
, Vol.
155
,
A.
Benavent-Climent
, and
F.
Mollaioli
, eds.,
Springer
,
Cham
.
33.
Fischer
,
G.
,
1965
, “
Influence of Boundary Conditions on Stability of Thin-Walled Cylindrical Shells Under Axial Load and Internal Pressure
,”
AIAA J.
,
3
(
4
), pp.
736
738
.10.2514/3.2957
34.
National Aeronautics and Space Administration
,
1968
, “
Buckling of Thin-Walled Circular Cylinders
,” Washington, DC, Report No.
NASA SP-8007
.https://ntrs.nasa.gov/citations/19690013955
35.
Donnell
,
L. H.
,
1934
, “
A New Theory for the Buckling of Thin Cylinders Under Axial Compression and Bending
,”
Trans. ASME
,
56
(
8
), pp.
795
806.
10.1115/1.4019867
You do not currently have access to this content.