Abstract

The probabilistic safety analysis evaluates system reliability and failure probability by using statistics and probability theory. However, it cannot estimate the system safety uncertainties due to variabilities of probabilities in different system states. The article first summarizes how the information entropy expresses the probabilistic uncertainties due to nonuniform probability distributions of system states. Next, it argues that the conditional entropy of system operational and failure states appropriately describes both system redundancy and robustness. Finally, the article concludes that the probabilistic uncertainties of reliability, redundancy, and robustness jointly define the integral system safety. The concept of integral system safety allows for more precise definitions of efficient system functional properties, system configuration evaluation, optimal component selection, optimization, and decision making in engineering.

References

1.
Barlow
,
R. B.
, and
Proschan
,
F.
,
1965
,
Mathematical Theory of Reliability
,
Wiley
,
New York
.
2.
Gnedenko
,
B. V.
,
Belyayev
,
Y. K.
, and
Solovyev
,
A. D.
,
1969
,
Mathematical Methods of Reliability Theory
,
Birnbaum
,
Z. W.
, and
Lukacs
,
E.
, eds.,
Academic Press
,
New York
.
3.
Kapur
,
K. C.
, and
Lamberson
,
L. R.
,
1977
,
Reliability in Engineering Design
,
Wiley
,
NY
.
4.
Rao
,
S. S.
,
1992
,
Reliability Based Design
,
McGraw-Hill
,
New York
.
5.
Gnedenko
,
B.
, and
Ushakov
,
I.
,
1995
,
Probabilistic Reliability Engineering
,
Falk
,
J.
, ed.,
Wiley
,
New York
.
6.
Kececioglu
,
D.
,
1991
,
Reliability Engineering Handbook
,
Prentice Hall, Inc
.,
Upper Saddle River, NJ
, Vol.
2
.
7.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
,
Wiley
,
New York
.
8.
Hartley
,
R. V.
,
1928
, “
Transmission of Information
,”
Bell Syst. Tech, J
,
7
(
2
), pp. 535-563. 10.1002/j.1538-7305.1928.tb01236.x
9.
Wiener
,
N.
,
1948
, “
Cybernetic, or Control and Communication
,”
Bell Syst. Tech. J
,
27
, pp. 379–423,
623
656
.
10.
Shannon
,
C. E.
, and
Weaver
,
W.
,
1949
,
The Mathematical Theory of Communication
,
Urbana University of Illinois
, Champaign,
IL
.
11.
Khinchin
,
A. I.
,
1957
,
Mathematical Foundations of Information Theory
,
Dover Publications
,
Mineola, NY
.
12.
Renyi
,
A.
,
1970
,
Probability Theory
,
North-Holland
,
Amsterdam, The Netherlands
.
13.
Aczel
,
J.
, and
Daroczy
,
Z.
,
1975
,
On Measures of Information and Their Characterization
,
Academic Press
,
New York
.
14.
Taguchi
,
G.
,
Elsayed
,
E. A.
, and
Hsiang
,
T. C.
,
1989
,
Quality Engineering in Production Systems
,
McGraw-Hill
,
New York
.
15.
Lloyd
,
J. R.
, and
Clawson
,
W. C.
,
1984
,
Reserve and Residual Strength of Pile Founded Offshore Platforms, the Role of Design, Inspection and Redundancy in Marine Structural Reliability, Proceedings
,
National Academy Press
,
Washington, DC
.
16.
Hendawi
,
S.
, and
Frangopol
,
D. M.
,
1994
, “
System Reliability and Redundancy in Structural Design and Evaluation
,”
Struct. Saf.
,
16
(
1–2
), pp.
47
71
.10.1016/0167-4730(94)00027-N
17.
Shire
,
M. I.
,
Jun
,
G. T.
, and
Robinson
,
S.
,
2018
, “
The Application of System Dynamics Modelling to System Safety Improvement: Present Use and Future Potential
,”
Saf. Sci.
,
106
, pp.
104
120
.10.1016/j.ssci.2018.03.010
18.
Li
,
W. J.
,
Zhang
,
L.
, and
Liang
,
W.
,
2017
, “
An Accident Causation Analysis and Taxonomy (ACAT) Model of Complex Industrial System From Both System Safety and Control Theory Perspectives
,”
Saf. Sci.
,
92
, pp.
94
103
.10.1016/j.ssci.2016.10.001
19.
Wang
,
Y. P.
,
Weidmann
,
U. A.
, and
Wang
,
H. S.
,
2017
, “
Using Catastrophe Theory to Describe Railway System Safety and Discuss System Risk Concept
,”
Saf. Sci.
,
91
, pp.
269
285
.10.1016/j.ssci.2016.08.026
20.
Wang
,
K. H.
, and
Kuo
,
C. C.
,
2000
, “
Cost and Probabilistic Analysis of Series Systems With Mixed Standby Components
,”
Appl. Math. Modell.
,
24
(
12
), pp.
957
967
.10.1016/S0307-904X(00)00028-7
21.
Zhang
,
Y. L.
, and
Wu
,
S. M.
,
2009
, “
Reliability Analysis for a k/n(F) system With Repairable Repair-Equipment
,”
Appl. Math. Modell.
,
33
(
7
), pp.
3052
3067
.10.1016/j.apm.2008.10.022
22.
Chakravarthy
,
S. R.
, and
Gomez-Corral
,
A.
,
2009
, “
The Influence of Delivery Times on Repairable k-Out-of-N Systems With Spares
,”
Appl. Math. Modell.
,
33
(
5
), pp.
2368
2387
.10.1016/j.apm.2008.07.007
23.
Gonzales
,
L.
,
2013
, “
Intrinsic Ordering, Combinatorial Numbers and Reliability Engineering
,”
Appl. Math. Modell.
,
37
(
6
), pp.
3994
3958
.10.1016/j.apm.2012.09.038
24.
Kokolakis
,
G.
, and
Papageorgiou
,
E.
,
2006
, “
Scheduling Starting Times for an Active Redundant System With Non-Identical Lifetimes
,”
Appl. Math. Modell.
,
30
(
12
), pp.
1535
1545
.10.1016/j.apm.2005.08.010
25.
Agarwal
,
M.
, and
Sharma
,
V. K.
,
2010
, “
Ant Colony Approach to Constrained Redundancy Optimization in Binary Systems
,”
Appl. Math. Modell.
,
34
(
4
), pp.
992
1003
.10.1016/j.apm.2009.07.016
26.
Yeter
,
B.
,
Garbatov
,
Y.
, and
Guedes Soares
,
C.
,
2018
, “
Strength Assessment of Jacket Offshore Wind Turbine Support Structure Accounting for Rupture
,”
ASME
Paper No. OMAE2018-77101.10.1115/OMAE2018-77101
27.
Chen
,
S. G.
,
2012
, “
An Optimal Capacity Assignment for the Robust Design Problem in Capacitated Flow Networks
,”
Appl. Math. Modell.
,
36
(
11
), pp.
5272
5282
.10.1016/j.apm.2011.12.034
28.
Hatefi
,
S. M.
, and
Jolai
,
F.
,
2014
, “
Robust and Reliable Forward-Reverse Logistics Network Design Under Demand Uncertainty and Facility Disruptions
,”
Appl. Math. Modell.
,
38
(
9–10
), pp.
2630
2647
.10.1016/j.apm.2013.11.002
29.
Guikema
,
S. D.
, and
Pate-Cornell
,
M. E.
,
2002
, “
Component Choice for Managing Risk in Engineered Systems With Generalized Risk/Cost Functions
,”
Reliab. Eng. Syst. Saf.
,
78
(
3
), pp.
227
238
.10.1016/S0951-8320(02)00155-2
30.
Miao
,
F.
, and
Ghosn
,
M.
,
2016
, “
Reliability-Based Progressive Collapse Analysis of Highway Bridges
,”
Struct. Saf.
,
63
, pp.
33
46
.10.1016/j.strusafe.2016.05.004
31.
Ghosn
,
M.
,
Moses
,
F.
, and
Frangopol
,
D. M.
,
2010
, “
Redundancy and Robustness of Highway Bridge Superstructures and Substructures
,”
Struct. Infrastructure Eng.
,
6
(
1–2
), pp.
257
278
.10.1080/15732470802664498
32.
Ziha
,
K.
,
2000
, “
Event Oriented System Analysis
,”
Probab. Eng, Mech
,
15
(
3
), pp.
261
275
.
33.
Ziha
,
K.
,
2000
, “
Redundancy and Robustness of Systems of Events
,”
Probab. Eng, Mech.
,
15
(
4
), pp.
347
357
.10.1016/S0266-8920(99)00036-3
34.
Ziha
,
K.
,
2001
, “
Event Oriented Analysis of Series Structural Systems
,”
Struct. Saf.
,
23
(
1
), pp.
1
29
.10.1016/S0167-4730(00)00022-9
35.
Ziha
,
K.
,
2003
, “
Event-Oriented Analysis of Fail-Safe Objects
,”
Trans. Famena
,
27
(
1
), pp.
11
22
.
36.
Ziha
,
K.
,
2003
, “
Redundancy Based Design by Event Oriented Analysis
,”
Trans. Famena
,
27
(
2
), pp.
11
22
.
37.
Hoshiya
,
M.
, and
Yamamoto
,
K.
,
2002
, “
Redundancy Index of Lifeline Systems
,”
J. Eng. Mech. – ASCE
,
128
(
9
), pp.
961
968
.10.1061/(ASCE)0733-9399(2002)128:9(961)
38.
Hoshiya
,
M.
,
Yamamoto
,
K.
, and
Ohno
,
H.
,
2004
, “
Redundancy Index of Lifelines for Mitigation Measures Against Seismic Risk
,”
Probab. Eng. Mech.
,
19
(
3
), pp.
205
210
.10.1016/j.probengmech.2004.02.003
39.
Blagojevic
,
B.
, and
Ziha
,
K.
,
2012
, “
Probabilistic Indicators of Structural Redundancy in Mechanics
,”
World J. Mech.
,
2
(
5
), pp.
229
238
.10.4236/wjm.2012.25028
40.
Blagojevic
,
B.
, and
Ziha
,
K.
,
2012
, “
Robustness Criteria for Safety Enhancement of Ship's Structural Components
,”
Brodogradnja
,
63
(
3
), pp.
11
17
.
41.
Blagojevic
,
B.
, and
Ziha
,
K.
,
2012
, “
Robust Structural Design Based on Event-Oriented System Analysis
,”
J. Shipbuilding Eng. Res.
,
1
(
1
), pp.
1
7
.
42.
Cornell
,
C. A.
,
1969
, “
A Probability-Based Structural Code
,”
ACI J.
,
66
(
12
), pp.
974
985
.
You do not currently have access to this content.