Abstract

Engineering design and technological risk assessment both entail learning or discovering new knowledge. Optimal learning is a procedure whereby new knowledge is obtained while minimizing some specific measure of effort (e.g., time or money expended). A paradox is a statement that appears self-contradictory, contrary to common sense, or simply wrong, and yet might be true. The paradox of optimal learning is the assertion that a learning procedure cannot be optimized a priori—when designing the procedure—if the procedure depends on knowledge that the learning itself is intended to obtain. This is called a reflexive learning procedure. Many learning procedures can be optimized a priori. However, a priori optimization of a reflexive learning procedure is (usually) not possible. Most (but not all) reflexive learning procedures cannot be optimized without repeatedly implementing the procedure which may be very expensive. We discuss the prevalence of reflexive learning and present examples of the paradox. We also characterize those situations in which a reflexive learning procedure can be optimized. We discuss a response to the paradox (when it holds) based on the concept of robustness to uncertainty as developed in info-gap decision theory. We explain that maximizing the robustness is complementary to—but distinct from—minimizing a measure of effort of the learning procedure.

References

1.
Ben-Haim
,
Y.
,
2018
,
The Dilemmas of Wonderland: Decisions in the Age of Innovation
,
Oxford University Press
,
Oxford, UK
.
2.
Twain
,
M.
,
1884
,
Adventures of Huckleberry Finn
, Charles L. Webster and Company, New York.
3.
Fang
,
Z.
,
Guo
,
Z.-C.
, and
Zhou
,
D.-X.
,
2020
, “
Optimal Learning Rates for Distribution Regression
,”
J. Complexity
,
56
, p.
101426
.10.1016/j.jco.2019.101426
4.
Chang
,
D.
,
Ding
,
L.
,
Malmberg
,
R.
,
Robinson
,
D.
,
Wicker
,
M.
,
Yan
,
H.
,
Martinez
,
A.
, and
Cai
,
L.
,
2022
, “
Optimal Learning of Markov k-Tree Topology
,”
J. Comput. Math. Data Sci.
,
4
, p.
100046
.10.1016/j.jcmds.2022.100046
5.
Zhang
,
H.
,
Aoues
,
Y.
,
Lemosse
,
D.
, and
Souza de Cursi
,
E.
,
2021
, “
A Single-Loop Approach With Adaptive Sampling and Surrogate Kriging for Reliability-Based Design Optimization
,”
Eng. Optim.
,
53
(
8
), pp.
1450
1466
.10.1080/0305215X.2020.1800664
6.
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
Active Resource Allocation for Reliability Analysis With Model Bias Correction
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051403
.10.1115/1.4042344
7.
Li
,
M.
, and
Wang
,
Z.
,
2020
, “
Reliability-Based Multifidelity Optimization Using Adaptive Hybrid Learning
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
2
), p.
021005
.10.1115/1.4044773
8.
Li
,
M.
, and
Wang
,
Z.
,
2022
, “
Deep Reliability Learning With Latent Adaptation for Design Optimization Under Uncertainty
,”
Comput. Methods Appl. Mech. Eng.
,
397
(
2022
), p.
115130
.10.1016/j.cma.2022.115130
9.
Aghion
,
P.
,
Bolton
,
P.
,
Harris
,
C.
, and
Jullien
,
B.
,
1991
, “
Optimal Learning by Experimentation
,”
Rev. Econ. Stud.
,
58
(
4
), pp.
621
654
.10.2307/2297825
10.
Rob
,
R.
,
1991
, “
Learning and Capacity Expansion Under Demand Uncertainty
,”
Rev. Econ. Stud.
,
58
(
4
), pp.
655
675
.10.2307/2297826
11.
Brezzi
,
M.
, and
Lai
,
T. L.
,
2002
, “
Optimal Learning and Experimentation in Bandit Problems
,”
J. Econ. Dyn. Control
,
27
(
1
), pp.
87
108
.10.1016/S0165-1889(01)00028-8
12.
Wieland
,
V.
,
2000
, “
Monetary Policy, Parameter Uncertainty and Optimal Learning
,”
J. Monetary Econ.
,
46
(
1
), pp.
199
228
.10.1016/S0304-3932(00)00023-4
13.
Eichhorn
,
M. S.
,
DiMauro
,
P. J.
,
Lacson
,
C.
, and
Dennie
,
B.
,
2019
, “
Building the Optimal Learning Environment for Mathematics
,”
Math. Teach.
,
112
(
4
), pp.
262
267
.10.5951/mathteacher.112.4.0262
14.
Son
,
L. K.
, and
Sethi
,
R.
,
2006
, “
Metacognitive Control and Optimal Learning
,”
Cognit. Sci.
,
30
(
4
), pp.
759
774
.10.1207/s15516709cog0000_74
15.
Schuetze
,
B. A.
, and
Yan
,
V. X.
,
2022
, “
Optimal Learning Under Time Constraints: Empirical and Simulated Trade-Offs Between Depth and Breadth of Study
,”
Cognit. Sci.
,
46
(
4
), p.
e13136
.10.1111/cogs.13136
16.
Liu
,
C.
, and
Murphey
,
Y. L.
,
2020
, “
Optimal Power Management Based on Q-Learning and Neuro-Dynamic Programming for Plug-in Hybrid Electric Vehicles
,”
IEEE Trans. Neural Networks Learn. Syst.
,
31
(
6
), pp.
1942
1954
.10.1109/TNNLS.2019.2927531
17.
Huang
,
X.
,
Xie
,
T.
,
Wang
,
Z.
,
Chen
,
L.
,
Zhou
,
Q.
, and
Hu
,
Z.
,
2022
, “
A Transfer Learning-Based Multi-Fidelity Point-Cloud Neural Network Approach for Melt Pool Modeling in Additive Manufacturing
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
8
(
1
), p.
011104
.10.1115/1.4051749
18.
Pandita
,
P.
,
Ghosh
,
S.
,
Gupta
,
V. K.
,
Meshkov
,
A.
, and
Wang
,
L.
,
2022
, “
Application of Deep Transfer Learning and Uncertainty Quantification for Process Identification in Powder Bed Fusion
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
8
(
1
), p.
011106
.10.1115/1.4051748
19.
Chen
,
W.
,
Shi
,
C.
, and
Duenyas
,
I.
,
2020
, “
Optimal Learning Algorithms for Stochastic Inventory Systems With Random Capacities
,”
Prod. Oper. Manage.
,
29
(
7
), pp.
1624
1649
.10.1111/poms.13178
20.
Epstein
,
L. G.
, and
Ji
,
S.
,
2022
, “
Optimal Learning Under Robustness and Time-Consistency
,”
Oper. Res.
,
70
(
3
), pp.
1317
1329
.10.1287/opre.2019.1899
21.
Ellsberg
,
D.
,
1961
, “
Risk, Ambiguity, and the Savage Axioms
,”
Q. J. Econ.
,
75
(
4
), pp.
643
669
.10.2307/1884324
22.
Cau
,
M.
,
Sandoval
,
J.
,
Arguel
,
A.
,
Breque
,
C.
,
Huet
,
N.
,
Cau
,
J.
, and
Laribi
,
M. A.
,
2022
, “
Toward Optimal Learning of the Gesture in Laparoscopic Surgery: Methodology and Performance
,”
J. Clinical Med.
,
11
(
5
), p.
1398
.10.3390/jcm11051398
23.
Ben-Haim
,
Y.
,
2006
,
Info-Gap Decision Theory: Decisions Under Severe Uncertainty
, 2nd ed.,
Academic Press
,
London
.
24.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.10.1016/j.paerosci.2005.02.001
25.
Wheeler
,
J. A.
,
1992
, quoted in Scientific American, Dec, p.
20
.
You do not currently have access to this content.