A solar stirling engine based on a horizontal selective flat-plate converter is analyzed in this work. A detailed model for the heat losses towards the atmosphere is presented. The engine’s output power is maximised numerically. The analysis is based on meteorological data measured at Viking Landers sites during clear sky and dust storm conditions. All the computations were performed for a solar collection area similar in size with that of Mars Pathfinder’s Sojourner. The efficiency of converting solar energy into mechanical work at noon is as high as 18%. The power provided by the engine is as high as 16 W during autumn and winter. These results suggest that under the Martian environment the performance of properly designed solar Stirling engines is comparable with that of PV cell power systems.

1.
Hibbs, B. D., 1989, “Mars Rover Feasibility Study,” Final Report Aero Vironement, Inc, Report AV-FR 89/7011, October 1989.
2.
Collozza, A. J., 1990, “Preliminary Design of a Long-Endurance Mars Aircraft,” NASA CR185243, Sverdrup Technology Inc., Aerospace Technology Park, Brookpark, Ohio 44135, prepared for Lewis Research Center under Contract NAS 3-25266, April 1990.
3.
McKissock, B. I., Kohout, L. L., and Schmitz, P. C., 1990, “A Solar Power System for an Early Mars Expedition,” NASA Technical Memorandum 103219, Lewis Research Center, Cleveland, Ohio, American Institute of Chemical Engineers, Summer National Meeting, August 19–23, 1990.
4.
Golombek
,
M. P.
,
Cook
,
R. A.
,
Economou
,
T.
,
Folkner
,
W. M.
,
Haldermann
,
A. F. C.
,
Kallemeyn
,
P. H.
,
Knudsen
,
J. M.
,
Manning
,
R. M.
,
Moore
,
H. J.
,
Parker
,
T. J.
,
Rieder
,
R.
,
Schofield
,
J. T.
,
Smith
,
P. H.
, and
Vaughan
,
R. M.
,
1997
, “
Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions
,”
Science
,
278
(
5344
), pp.
1743
1748
.
5.
Menetrey, W. R., 1963, “Space Applications of Solar Energy,” in Introduction to the Utilization of Solar Energy, Eds. A. M. Zarem, D. D. Erway, McGraw Hill, New York, p. 326.
6.
Prisnjakov, V. F., Statsenko, I. N., Kondratjev, A. I., Markov, V. L., Petrov, B. E., Gabrinets, V. A., 1991, “Developing Space Power Brayton Systems with Solar Heat Input,” Research of Working Process of High Temperature Latent Heat Storage System, Proc. of SPS 91, Power from space, Paris 27–30 August 1991, pp. 465–470.
7.
Prisnyakov, V., 1991, “SPS Interest and Studies in USSR,” Proc. of SPS 91, Power from space, Paris 27–30 August 1991, p. 36.
8.
Secunde, R., Labus, T. L., Lovely, R. G., 1989, “Solar Dynamic Power Module Design,” Proc 24th International Energy Conversion Conf., vol 1, IEEE, Piscataway, New Jersey, pp. 299–307.
9.
Weingartner
,
S.
,
Blumenberg
,
J.
, and
Ruppe
,
H. O.
, 1994, “Influence of Orbit on Solar-Dynamic Power Systems,” Space Power, 13(1&2), pp. 103–120.
10.
Martin
,
L. J.
, and
Zurck
,
R. W.
,
1993
, “
An Analysis of the History of Dust Activity on Mars
,”
J. Geophys.
,
98
(
E2
), pp.
3221
3246
.
11.
Hourdin
,
F.
,
Forget
,
F.
, and
Talagrand
,
O.
,
1995
, “
The Sensitivity of the Martian Surface Pressure and Atmospheric Mass Budget to Various Parameters: A Comparison Between Numerical Simulations and Viking Observations
,”
J. Geophys. Res.
,
100
(
E3
), pp.
5501
5523
.
12.
Zurek, R. W., Barnes, J. R., Haberle, R. M., Pollack, J. B., Tillman, J. E., and Leovy, C. B., 1992, Chapter 26: “Dynamics of the Atmosphere Mars,” pp. 835–933; in Mars, Eds H. H. Kieffer et al., 1498 pages, University of Arizona Press.
13.
Badescu
,
V.
,
1998
, “
Different Strategies for Maximum Solar Radiation Collection on Mars Surface
,”
Acta Astronaut.
,
43
(
7–8
), pp.
409
421
.
14.
Badescu
,
V.
,
Popescu
,
Gh.
,
Feidt
,
M.
,
2000
, “
Design and Optimization of a Combination Solar Collector-Thermal Engine Operating on Mars
,”
Renewable Energy
,
21
, pp.
1
22
.
15.
Badescu
,
V.
,
Popescu
,
G.
,
Feidt
,
M.
,
2001
, “
Simulation of a Thermal Solar Power Plant Operating on Mars Under Clear Sky and Dust Storm Conditions
,”
Acta Astronaut.
,
49
(
12
), pp.
667
679
.
16.
Badescu
,
V.
,
Popescu
,
G.
,
Feidt
,
M.
,
2000
, “
Simulation of a Martian Solar Thermal Power Plant: Diurnal Operation and Power-efficiency Correlations
,”
J. Br. Interplanet. Soc.
,
53
(
3/4
), pp.
131
144
.
17.
Eaton
,
C. B.
,
Blum
,
H. A.
,
1975
, “
The Use of Moderate Vacum Environments as a Means of Increasing the Collectors Efficiencies and Operating Temperatures of a Flat-plate Solar Collectors
,”
Sol. Energy
,
17
, pp.
151
158
.
18.
Stefanescu, D., Marinescu, M., Danescu, Al., 1982, “Transferul de Caldura ı^n Tehnica,” Vol. 1, Editura Tehnica, Bucuresti.
19.
Pop, M. G., Leca, A., Prisecaru, I., Neaga, C., Zidaru, G., Musatesct, V., and Isbasoiu, E. C., 1987, “Indrumar-Tabele, Monograme si Formule Termotechnice,” Vol. 1, Editura Tehnica, Bucuresti.
20.
Duffie, J. A., and Beckmann, W. A., 1991, Solar Energy of Thermall Processes, Wiley Interscience, New York.
21.
Lide, D. R., (Ed.) 1991, Handbook of Chemistry and Physics, 71th Edition, pp. 15–39, C.R.C. Press.
22.
Senft, J. R., 1996, An Introduction to Low Temperature Differential Stirling Engines, Moriya Press, River Falls, WI.
23.
Howell
,
J. R.
, and
Bannerot
,
R. B.
,
1997
, “
Optimum Solar Collector Operation for Maximum Cycle Work Output
,”
Sol. Energy
,
19
, pp.
149
153
.
24.
Badescu
,
V.
, 1992, “Optimum Operation of a Solar Converter in Combination with a Stirling or Ericsson Heat Engine,” Energy, The International Journal 17 (6), pp. 601–607.
25.
Lee, S. W., 1995, “Viking Lander Meteorology and Atmospheric Opacity Data Set Archive,” Volume VL-1001, Laboratory for Atmospheric and Space Physics, Campus Box 392, University of Colorado, CO 80309-0392, (10 July 1995).
26.
Badescu
,
V.
,
1998
, “
Simulation of Solar Cells Utilization on the Surface of Mars
,”
Acta Astron.
,
43
(
9–10
), pp.
443
453
.
27.
Pollack
,
J. B.
,
Haberle
,
R. M.
,
Murphy
,
J. R.
,
Shaeffer
,
J.
,
Lee
,
H.
,
1990
, “
Simulation of the General Circulation of the Martian Atmosphere,” 1. Polar processes
.
Acta Astronaut.
,
95
, pp.
1447
1473
.
28.
Badescu
,
V.
,
2001
, “
Inference of Atmospheric Optical Depth from Near-Surface Meteorological Parameters on Mars
,”
Renewable Energy
,
24
, pp.
45
57
.
29.
Benz
,
N.
, and
Beikircher
,
T.
,
1999
, “
High Efficiency Evacuated Flat-plate Solar Collectors for Process Steam Production
,”
Sol. Energy
,
65
, pp.
111
118
.
You do not currently have access to this content.