Transparent counter electrodes were prepared on transparent conductive glass (TCG) substrates from a hexachloroplatinic acid (H2PtCl6) solution applying the thermal decomposition method in combination with the spin-coating deposition technique. The effect of the precursor concentration and the number of deposited platinum layers on the surface characteristics of the Pt films was examined, and the relation between those surface characteristics and the electrochemical properties of the corresponding modified Pt/TCG electrodes was defined. Four types of counterelectrodes were prepared, differing in the concentration of the H2PtCl6 solution (0.03M and 0.15M) and in the number of Pt layers (one or two Pt layers); their performance as counterelectrodes was evaluated after their incorporation into dye-sensitized solar cells (DSSCs) employing a solid state redox electrolyte. The obtained results show that solar cells using counterelectrodes prepared from the 0.03MH2PtCl6 solution and consisting of two Pt layers (Pt032 electrode) exhibited the best performance characteristics (diffusion coefficient D*I3=1.58×105cm2s1, conversion efficiency η=2.16%, fill factor ff=62.14%, and short circuit photocurrent Isc=4.71mAcm2). The electrochemical behavior of the modified counterelectrodes is consistent with the surface characteristics of the Pt film that formed on the conductive glass substrate, which seems to be significantly affected by the adopted method and the adjusted experimental parameters (Pt concentration and number of Pt layers). Specifically, this type of electrodes beside their low roughness (Rq=11.5nm), also presents a high complexity (Df=2.3). As a result, for this kind of solid state DSSCs, the less rough but the more complex the Pt/TCG electrode surface, the higher the efficiency of the corresponding solar cells.

1.
O’Regan
,
B.
, and
Grätzel
,
M.
, 1991, “
A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films
,”
Nature (London)
0028-0836,
353
, pp.
737
740
.
2.
Nazeeruddin
,
M. K.
,
Kay
,
A.
,
Humphry-Baker
,
R.
,
Müller
,
E.
,
Liska
,
P.
,
Vlachopoulos
,
N.
, and
Grätzel
,
M.
, 1993, “
Conversion of Light to Electricity by Cis-X2bis (2,2′-Bipyridyl-4,4′-Dicarboxylate) Ruthenium(II) Charge-Transfer Sensitizers (X=Cl−, Br−, I−, CN−, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes
,”
J. Am. Chem. Soc.
0002-7863,
115
(
14
), pp.
6382
6390
.
3.
Barbe
,
C. J.
,
Arendse
,
F.
,
Comte
,
P.
,
Jirousek
,
M.
,
Lenzmann
,
F.
,
Shklover
,
V.
, and
Grätzel
,
M.
, 1997, “
Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications
,”
J. Am. Ceram. Soc.
0002-7820,
80
, pp.
3157
3171
.
4.
Nazeeruddin
,
M. K.
,
Pechy
,
P.
,
Renouard
,
T.
,
Zakeeruddin
,
S. M.
,
Humphry–Baker
,
R.
,
Comte
,
P.
,
Liska
,
P.
,
Cevey
,
L.
,
Costa
,
E.
,
Shklover
,
V.
,
Spiccia
,
L.
,
Deacon
,
G. B.
,
Bignozzi
,
C. A.
, and
Grätzel
,
M.
, 2001, “
Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells
,”
J. Am. Chem. Soc.
0002-7863,
123
(
8
), pp.
1613
1624
.
5.
Greijer
,
H.
,
Karlson
,
L.
,
Lindquist
,
S. T.
, and
Hagfeldt
,
A.
, 2001, “
Environmental Aspects of Electricity Generation From a Nanocrystalline Dye Sensitized Solar Cell
,”
Renewable Energy
0960-1481,
23
, pp.
27
39
.
6.
Smestad
,
G.
,
Bignozzi
,
C.
, and
Argazzi
,
R.
, 1994, “
Testing of Dye Sensitized TiO2 Solar Cells I: Experimental Photocurrent Output and Conversion Efficiencies
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
32
(
3
), pp.
259
272
.
7.
Stergiopoulos
,
T.
,
Bernard
,
M. C.
,
Hugot-Le Goff
,
A.
, and
Falaras
,
P.
, 2004, “
Resonance Micro-Raman Spectrophotoelectrochemistry on Nanocrystalline TiO2 Thin Film Electrodes Sensitized by Ru(II) Complexes
,”
Coord. Chem. Rev.
0010-8545,
248
(
13–14
), pp.
1407
1420
.
8.
Imoto
,
K.
,
Takahashi
,
K.
,
Yamaguchi
,
T.
,
Komura
,
T.
,
Nakamura
,
J.
, and
Murata
,
K.
, 2003, “
High-Performance Carbon Counter Electrode for Dye-Sensitized Solar Cells
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
79
(
4
), pp.
459
469
.
9.
Imoto
,
K.
,
Suzuki
,
M.
,
Yamaguchi
,
T.
,
Komura
,
T.
,
Nakamura
,
J.
, and
Murata
,
K.
, 2003, “
Activated Carbon Counter Electrode for Dye-Sensitized Solar Cell
,”
Electrochemistry (Tokyo, Jpn.)
1344-3542,
71
, pp.
944
947
.
10.
Saito
,
Y.
,
Kitamura
,
T.
,
Wada
,
Y.
, and
Yanagida
,
S.
, 2002, “
Application of Poly(3,4-Ethylene Dioxythiophene) to Counter Electrode in Dye-Sensitized Solar Cells
,”
Chem. Lett.
0366-7022,
31
, pp.
1060
1061
.
11.
Kay
,
A.
, and
Grätzel
,
M.
, 1996, “
Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
44
(
1
), pp.
99
117
.
12.
Papageorgiou
,
N.
,
Maier
,
W. F.
, and
Grätzel
,
M.
, 1997, “
An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media
,”
J. Electrochem. Soc.
0013-4651,
144
(
3
), pp.
876
884
.
13.
Wang
,
G.
,
Lin
,
Y.
,
Xiao
,
X.
,
Li
,
X.
, and
Wang
,
W.
, 2004, “
X-ray Photoelectron Spectroscopy Analysis of The Stability of Platinized Catalytic Electrodes in Dye-Sensitized Solar Cells
,”
Surf. Interface Anal.
0142-2421,
36
(
11
), pp.
1437
1440
.
14.
Ma
,
T.
,
Fang
,
X.
,
Akiyama
,
M.
,
Inoue
,
K.
,
Noma
,
H.
, and
Abe
,
E.
, 2004, “
Properties of Several Types of Novel Counter Electrodes for Dye-Sensitized Solar Cells
,”
J. Electroanal. Chem.
0022-0728,
574
(
1
), pp.
77
83
.
15.
Fang
,
X.
,
Ma
,
T.
,
Guan
,
G.
,
Akiyama
,
M.
, and
Abe
,
E.
, 2004, “
Performances Characteristics of Dye-Sensitized Solar Cells Based on Counter Electrodes With Pt Films of Different Thickness
,”
J. Photochem. Photobiol., A
1010-6030,
164
(
1–3
), pp.
179
182
.
16.
Rong-Li
,
J.
,
Cheng-Yang
,
W.
, and
Bin
,
Z.
, 2006, “
Preparation and Characterization of Pt/Superfine Mesocarbon Microbead Powers Electrocatalysts
,”
J. Fuel Cell Sci. Technol.
1550-624X,
3
(
3
), pp.
358
360
.
17.
Kontos
,
A. G.
,
Fardis
,
M.
,
Prodromidis
,
M. I.
,
Stergiopoulos
,
T.
,
Chatzivasilogiou
,
E.
,
Papavassiliou
,
G.
, and
Falaras
,
P.
, 2006, “
Morphology, Ionic Diffusion and Applicability of Novel Polymer Gel Electrolytes With LiI∕I2,
Phys. Chem. Chem. Phys.
1463-9076,
8
, pp.
767
776
.
You do not currently have access to this content.