A solar reactor consisting of a cavity-receiver containing an array of tubular absorbers is considered for performing the ZnO-dissociation as part of a two-step H2O-splitting thermochemical cycle using concentrated solar energy. The continuity, momentum, and energy governing equations that couple the rate of heat transfer to the Arrhenius-type reaction kinetics are formulated for an absorbing-emitting-scattering particulate media and numerically solved using a computational fluid dynamics code. Parametric simulations were carried out to examine the influence of the solar flux concentration ratio (3000–6000 suns), number of tubes (1–10), ZnO mass flow rate (2–20 g/min per tube), and ZnO particle size (0.061μm) on the reactor’s performance. The reaction extent reaches completion within 1 s residence time at above 2000 K, yielding a solar-to-chemical energy conversion efficiency of up to 29%.

1.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
0038-092X,
78
, pp.
603
615
.
2.
Schunk
,
L.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
, 2008, “
A Solar Receiver-Reactor for the Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
0199-6231,
130
, p.
021009
.
3.
Roeb
,
M.
,
Sattler
,
C.
,
Klüser
,
R.
,
Monnerie
,
N.
,
de Oliveira
,
L.
,
Konstandopoulos
,
A. G.
,
Agrafiotis
,
C.
,
Zaspalis
,
V. T.
,
Nalbandian
,
L.
,
Steele
,
A.
, and
Stobbe
,
P.
, 2006, “
Solar Hydrogen Production by a Two-Step Cycle Based on Mixed Iron Oxides
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
125
133
.
4.
Perkins
,
C. M.
, 2006, “
Solar Thermal Decomposition of ZnO in Aerosol Flow to Facilitate Renewable Production of Hydrogen
,” Ph.D. thesis, University of Colorado, Boulder, CO.
5.
Melchior
,
T.
, and
Steinfeld
,
A.
, 2008, “
Radiative Transfer Within a Cylindrical Cavity With Diffusely/Specularly Reflecting Inner Walls Containing an Array of Tubular Absorbers
,”
ASME J. Sol. Energy Eng.
0199-6231,
130
(
2
), p.
021013
.
6.
Epstein
,
M.
,
Olalde
,
G.
,
Santén
,
S.
,
Steinfeld
,
A.
, and
Wieckert
,
C.
, 2008, “
Towards the Industrial Solar Carbothermic Production of Zinc
,”
ASME J. Sol. Energy Eng.
0199-6231,
130
(
1
), p.
014505
.
7.
Siegel
,
R.
, and
Howell
,
J.
, 2002,
Thermal Radiation Heat Transfer
,
Taylor & Francis Inc.
,
New York
, Chap. 11.
8.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
9.
Srikant
,
V.
, and
Clarke
,
D. R.
, 1998, “
On the Optical Band Gap of Zinc Oxide
,”
J. Appl. Phys.
0021-8979,
83
, pp.
5447
5451
.
10.
Al-Hilli
,
S. M.
, and
Willander
,
M.
, 2006, “
Optical Properties of Zinc Oxide Nano-Particles Embedded in Dielectric Medium for UV Region: Numerical Simulation
,”
J. Nanopart. Res.
1388-0764,
8
, pp.
79
97
.
11.
Levenspiel
,
O.
, 1999,
Chemical Reaction Engineering
,
Wiley
,
New York
, Chap. 5.
12.
2006, Fluent Reference Manual 6.3.21 Beta, Fluent, Inc.
13.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 1998, “
Finite Volume Method for Radiative Heat Transfer Using Unstructured Meshes
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
3
), pp.
313
321
.
14.
Montgomery
,
D. C.
, 2005,
Design and Analysis of Experiments
,
Wiley
,
New York
.
You do not currently have access to this content.